/* * Copyright © 2021 Raspberry Pi * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "v3dv_private.h" #include "v3dv_meta_common.h" #include "broadcom/common/v3d_macros.h" #include "broadcom/cle/v3dx_pack.h" #include "broadcom/compiler/v3d_compiler.h" #include "vk_format_info.h" struct rcl_clear_info { const union v3dv_clear_value *clear_value; struct v3dv_image *image; VkImageAspectFlags aspects; uint32_t level; }; static struct v3dv_cl * emit_rcl_prologue(struct v3dv_job *job, struct v3dv_meta_framebuffer *fb, const struct rcl_clear_info *clear_info) { const struct v3dv_frame_tiling *tiling = &job->frame_tiling; struct v3dv_cl *rcl = &job->rcl; v3dv_cl_ensure_space_with_branch(rcl, 200 + tiling->layers * 256 * cl_packet_length(SUPERTILE_COORDINATES)); if (job->cmd_buffer->state.oom) return NULL; cl_emit(rcl, TILE_RENDERING_MODE_CFG_COMMON, config) { config.early_z_disable = true; config.image_width_pixels = tiling->width; config.image_height_pixels = tiling->height; config.number_of_render_targets = 1; config.multisample_mode_4x = tiling->msaa; config.maximum_bpp_of_all_render_targets = tiling->internal_bpp; config.internal_depth_type = fb->internal_depth_type; } if (clear_info && (clear_info->aspects & VK_IMAGE_ASPECT_COLOR_BIT)) { uint32_t clear_pad = 0; if (clear_info->image) { const struct v3dv_image *image = clear_info->image; const struct v3d_resource_slice *slice = &image->slices[clear_info->level]; if (slice->tiling == V3D_TILING_UIF_NO_XOR || slice->tiling == V3D_TILING_UIF_XOR) { int uif_block_height = v3d_utile_height(image->cpp) * 2; uint32_t implicit_padded_height = align(tiling->height, uif_block_height) / uif_block_height; if (slice->padded_height_of_output_image_in_uif_blocks - implicit_padded_height >= 15) { clear_pad = slice->padded_height_of_output_image_in_uif_blocks; } } } const uint32_t *color = &clear_info->clear_value->color[0]; cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART1, clear) { clear.clear_color_low_32_bits = color[0]; clear.clear_color_next_24_bits = color[1] & 0x00ffffff; clear.render_target_number = 0; }; if (tiling->internal_bpp >= V3D_INTERNAL_BPP_64) { cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART2, clear) { clear.clear_color_mid_low_32_bits = ((color[1] >> 24) | (color[2] << 8)); clear.clear_color_mid_high_24_bits = ((color[2] >> 24) | ((color[3] & 0xffff) << 8)); clear.render_target_number = 0; }; } if (tiling->internal_bpp >= V3D_INTERNAL_BPP_128 || clear_pad) { cl_emit(rcl, TILE_RENDERING_MODE_CFG_CLEAR_COLORS_PART3, clear) { clear.uif_padded_height_in_uif_blocks = clear_pad; clear.clear_color_high_16_bits = color[3] >> 16; clear.render_target_number = 0; }; } } cl_emit(rcl, TILE_RENDERING_MODE_CFG_COLOR, rt) { rt.render_target_0_internal_bpp = tiling->internal_bpp; rt.render_target_0_internal_type = fb->internal_type; rt.render_target_0_clamp = V3D_RENDER_TARGET_CLAMP_NONE; } cl_emit(rcl, TILE_RENDERING_MODE_CFG_ZS_CLEAR_VALUES, clear) { clear.z_clear_value = clear_info ? clear_info->clear_value->z : 1.0f; clear.stencil_clear_value = clear_info ? clear_info->clear_value->s : 0; }; cl_emit(rcl, TILE_LIST_INITIAL_BLOCK_SIZE, init) { init.use_auto_chained_tile_lists = true; init.size_of_first_block_in_chained_tile_lists = TILE_ALLOCATION_BLOCK_SIZE_64B; } return rcl; } static void emit_frame_setup(struct v3dv_job *job, uint32_t min_layer, const union v3dv_clear_value *clear_value) { v3dv_return_if_oom(NULL, job); const struct v3dv_frame_tiling *tiling = &job->frame_tiling; struct v3dv_cl *rcl = &job->rcl; const uint32_t tile_alloc_offset = 64 * min_layer * tiling->draw_tiles_x * tiling->draw_tiles_y; cl_emit(rcl, MULTICORE_RENDERING_TILE_LIST_SET_BASE, list) { list.address = v3dv_cl_address(job->tile_alloc, tile_alloc_offset); } cl_emit(rcl, MULTICORE_RENDERING_SUPERTILE_CFG, config) { config.number_of_bin_tile_lists = 1; config.total_frame_width_in_tiles = tiling->draw_tiles_x; config.total_frame_height_in_tiles = tiling->draw_tiles_y; config.supertile_width_in_tiles = tiling->supertile_width; config.supertile_height_in_tiles = tiling->supertile_height; config.total_frame_width_in_supertiles = tiling->frame_width_in_supertiles; config.total_frame_height_in_supertiles = tiling->frame_height_in_supertiles; } /* Implement GFXH-1742 workaround. Also, if we are clearing we have to do * it here. */ for (int i = 0; i < 2; i++) { cl_emit(rcl, TILE_COORDINATES, coords); cl_emit(rcl, END_OF_LOADS, end); cl_emit(rcl, STORE_TILE_BUFFER_GENERAL, store) { store.buffer_to_store = NONE; } if (clear_value && i == 0) { cl_emit(rcl, CLEAR_TILE_BUFFERS, clear) { clear.clear_z_stencil_buffer = true; clear.clear_all_render_targets = true; } } cl_emit(rcl, END_OF_TILE_MARKER, end); } cl_emit(rcl, FLUSH_VCD_CACHE, flush); } static void emit_supertile_coordinates(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer) { v3dv_return_if_oom(NULL, job); struct v3dv_cl *rcl = &job->rcl; const uint32_t min_y = framebuffer->min_y_supertile; const uint32_t max_y = framebuffer->max_y_supertile; const uint32_t min_x = framebuffer->min_x_supertile; const uint32_t max_x = framebuffer->max_x_supertile; for (int y = min_y; y <= max_y; y++) { for (int x = min_x; x <= max_x; x++) { cl_emit(rcl, SUPERTILE_COORDINATES, coords) { coords.column_number_in_supertiles = x; coords.row_number_in_supertiles = y; } } } } static void emit_linear_load(struct v3dv_cl *cl, uint32_t buffer, struct v3dv_bo *bo, uint32_t offset, uint32_t stride, uint32_t format) { cl_emit(cl, LOAD_TILE_BUFFER_GENERAL, load) { load.buffer_to_load = buffer; load.address = v3dv_cl_address(bo, offset); load.input_image_format = format; load.memory_format = V3D_TILING_RASTER; load.height_in_ub_or_stride = stride; load.decimate_mode = V3D_DECIMATE_MODE_SAMPLE_0; } } static void emit_linear_store(struct v3dv_cl *cl, uint32_t buffer, struct v3dv_bo *bo, uint32_t offset, uint32_t stride, bool msaa, uint32_t format) { cl_emit(cl, STORE_TILE_BUFFER_GENERAL, store) { store.buffer_to_store = RENDER_TARGET_0; store.address = v3dv_cl_address(bo, offset); store.clear_buffer_being_stored = false; store.output_image_format = format; store.memory_format = V3D_TILING_RASTER; store.height_in_ub_or_stride = stride; store.decimate_mode = msaa ? V3D_DECIMATE_MODE_ALL_SAMPLES : V3D_DECIMATE_MODE_SAMPLE_0; } } /* This chooses a tile buffer format that is appropriate for the copy operation. * Typically, this is the image render target type, however, if we are copying * depth/stencil to/from a buffer the hardware can't do raster loads/stores, so * we need to load and store to/from a tile color buffer using a compatible * color format. */ static uint32_t choose_tlb_format(struct v3dv_meta_framebuffer *framebuffer, VkImageAspectFlags aspect, bool for_store, bool is_copy_to_buffer, bool is_copy_from_buffer) { if (is_copy_to_buffer || is_copy_from_buffer) { switch (framebuffer->vk_format) { case VK_FORMAT_D16_UNORM: return V3D_OUTPUT_IMAGE_FORMAT_R16UI; case VK_FORMAT_D32_SFLOAT: return V3D_OUTPUT_IMAGE_FORMAT_R32F; case VK_FORMAT_X8_D24_UNORM_PACK32: return V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI; case VK_FORMAT_D24_UNORM_S8_UINT: /* When storing the stencil aspect of a combined depth/stencil image * to a buffer, the Vulkan spec states that the output buffer must * have packed stencil values, so we choose an R8UI format for our * store outputs. For the load input we still want RGBA8UI since the * source image contains 4 channels (including the 3 channels * containing the 24-bit depth value). * * When loading the stencil aspect of a combined depth/stencil image * from a buffer, we read packed 8-bit stencil values from the buffer * that we need to put into the LSB of the 32-bit format (the R * channel), so we use R8UI. For the store, if we used R8UI then we * would write 8-bit stencil values consecutively over depth channels, * so we need to use RGBA8UI. This will write each stencil value in * its correct position, but will overwrite depth values (channels G * B,A) with undefined values. To fix this, we will have to restore * the depth aspect from the Z tile buffer, which we should pre-load * from the image before the store). */ if (aspect & VK_IMAGE_ASPECT_DEPTH_BIT) { return V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI; } else { assert(aspect & VK_IMAGE_ASPECT_STENCIL_BIT); if (is_copy_to_buffer) { return for_store ? V3D_OUTPUT_IMAGE_FORMAT_R8UI : V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI; } else { assert(is_copy_from_buffer); return for_store ? V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI : V3D_OUTPUT_IMAGE_FORMAT_R8UI; } } default: /* Color formats */ return framebuffer->format->rt_type; break; } } else { return framebuffer->format->rt_type; } } static inline bool format_needs_rb_swap(struct v3dv_device *device, VkFormat format) { const uint8_t *swizzle = v3dv_get_format_swizzle(device, format); return swizzle[0] == PIPE_SWIZZLE_Z; } static void emit_image_load(struct v3dv_device *device, struct v3dv_cl *cl, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *image, VkImageAspectFlags aspect, uint32_t layer, uint32_t mip_level, bool is_copy_to_buffer, bool is_copy_from_buffer) { uint32_t layer_offset = v3dv_layer_offset(image, mip_level, layer); /* For image to/from buffer copies we always load to and store from RT0, * even for depth/stencil aspects, because the hardware can't do raster * stores or loads from/to the depth/stencil tile buffers. */ bool load_to_color_tlb = is_copy_to_buffer || is_copy_from_buffer || aspect == VK_IMAGE_ASPECT_COLOR_BIT; const struct v3d_resource_slice *slice = &image->slices[mip_level]; cl_emit(cl, LOAD_TILE_BUFFER_GENERAL, load) { load.buffer_to_load = load_to_color_tlb ? RENDER_TARGET_0 : v3dX(zs_buffer_from_aspect_bits)(aspect); load.address = v3dv_cl_address(image->mem->bo, layer_offset); load.input_image_format = choose_tlb_format(framebuffer, aspect, false, is_copy_to_buffer, is_copy_from_buffer); load.memory_format = slice->tiling; /* When copying depth/stencil images to a buffer, for D24 formats Vulkan * expects the depth value in the LSB bits of each 32-bit pixel. * Unfortunately, the hardware seems to put the S8/X8 bits there and the * depth bits on the MSB. To work around that we can reverse the channel * order and then swap the R/B channels to get what we want. * * NOTE: reversing and swapping only gets us the behavior we want if the * operations happen in that exact order, which seems to be the case when * done on the tile buffer load operations. On the store, it seems the * order is not the same. The order on the store is probably reversed so * that reversing and swapping on both the load and the store preserves * the original order of the channels in memory. * * Notice that we only need to do this when copying to a buffer, where * depth and stencil aspects are copied as separate regions and * the spec expects them to be tightly packed. */ bool needs_rb_swap = false; bool needs_chan_reverse = false; if (is_copy_to_buffer && (framebuffer->vk_format == VK_FORMAT_X8_D24_UNORM_PACK32 || (framebuffer->vk_format == VK_FORMAT_D24_UNORM_S8_UINT && (aspect & VK_IMAGE_ASPECT_DEPTH_BIT)))) { needs_rb_swap = true; needs_chan_reverse = true; } else if (!is_copy_from_buffer && !is_copy_to_buffer && (aspect & VK_IMAGE_ASPECT_COLOR_BIT)) { /* This is not a raw data copy (i.e. we are clearing the image), * so we need to make sure we respect the format swizzle. */ needs_rb_swap = format_needs_rb_swap(device, framebuffer->vk_format); } load.r_b_swap = needs_rb_swap; load.channel_reverse = needs_chan_reverse; if (slice->tiling == V3D_TILING_UIF_NO_XOR || slice->tiling == V3D_TILING_UIF_XOR) { load.height_in_ub_or_stride = slice->padded_height_of_output_image_in_uif_blocks; } else if (slice->tiling == V3D_TILING_RASTER) { load.height_in_ub_or_stride = slice->stride; } if (image->vk.samples > VK_SAMPLE_COUNT_1_BIT) load.decimate_mode = V3D_DECIMATE_MODE_ALL_SAMPLES; else load.decimate_mode = V3D_DECIMATE_MODE_SAMPLE_0; } } static void emit_image_store(struct v3dv_device *device, struct v3dv_cl *cl, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *image, VkImageAspectFlags aspect, uint32_t layer, uint32_t mip_level, bool is_copy_to_buffer, bool is_copy_from_buffer, bool is_multisample_resolve) { uint32_t layer_offset = v3dv_layer_offset(image, mip_level, layer); bool store_from_color_tlb = is_copy_to_buffer || is_copy_from_buffer || aspect == VK_IMAGE_ASPECT_COLOR_BIT; const struct v3d_resource_slice *slice = &image->slices[mip_level]; cl_emit(cl, STORE_TILE_BUFFER_GENERAL, store) { store.buffer_to_store = store_from_color_tlb ? RENDER_TARGET_0 : v3dX(zs_buffer_from_aspect_bits)(aspect); store.address = v3dv_cl_address(image->mem->bo, layer_offset); store.clear_buffer_being_stored = false; /* See rationale in emit_image_load() */ bool needs_rb_swap = false; bool needs_chan_reverse = false; if (is_copy_from_buffer && (framebuffer->vk_format == VK_FORMAT_X8_D24_UNORM_PACK32 || (framebuffer->vk_format == VK_FORMAT_D24_UNORM_S8_UINT && (aspect & VK_IMAGE_ASPECT_DEPTH_BIT)))) { needs_rb_swap = true; needs_chan_reverse = true; } else if (!is_copy_from_buffer && !is_copy_to_buffer && (aspect & VK_IMAGE_ASPECT_COLOR_BIT)) { needs_rb_swap = format_needs_rb_swap(device, framebuffer->vk_format); } store.r_b_swap = needs_rb_swap; store.channel_reverse = needs_chan_reverse; store.output_image_format = choose_tlb_format(framebuffer, aspect, true, is_copy_to_buffer, is_copy_from_buffer); store.memory_format = slice->tiling; if (slice->tiling == V3D_TILING_UIF_NO_XOR || slice->tiling == V3D_TILING_UIF_XOR) { store.height_in_ub_or_stride = slice->padded_height_of_output_image_in_uif_blocks; } else if (slice->tiling == V3D_TILING_RASTER) { store.height_in_ub_or_stride = slice->stride; } if (image->vk.samples > VK_SAMPLE_COUNT_1_BIT) store.decimate_mode = V3D_DECIMATE_MODE_ALL_SAMPLES; else if (is_multisample_resolve) store.decimate_mode = V3D_DECIMATE_MODE_4X; else store.decimate_mode = V3D_DECIMATE_MODE_SAMPLE_0; } } static void emit_copy_layer_to_buffer_per_tile_list(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_buffer *buffer, struct v3dv_image *image, uint32_t layer_offset, const VkBufferImageCopy2KHR *region) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); /* Load image to TLB */ assert((image->vk.image_type != VK_IMAGE_TYPE_3D && layer_offset < region->imageSubresource.layerCount) || layer_offset < image->vk.extent.depth); const uint32_t image_layer = image->vk.image_type != VK_IMAGE_TYPE_3D ? region->imageSubresource.baseArrayLayer + layer_offset : region->imageOffset.z + layer_offset; emit_image_load(job->device, cl, framebuffer, image, region->imageSubresource.aspectMask, image_layer, region->imageSubresource.mipLevel, true, false); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); /* Store TLB to buffer */ uint32_t width, height; if (region->bufferRowLength == 0) width = region->imageExtent.width; else width = region->bufferRowLength; if (region->bufferImageHeight == 0) height = region->imageExtent.height; else height = region->bufferImageHeight; /* Handle copy from compressed format */ width = DIV_ROUND_UP(width, vk_format_get_blockwidth(image->vk.format)); height = DIV_ROUND_UP(height, vk_format_get_blockheight(image->vk.format)); /* If we are storing stencil from a combined depth/stencil format the * Vulkan spec states that the output buffer must have packed stencil * values, where each stencil value is 1 byte. */ uint32_t cpp = region->imageSubresource.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT ? 1 : image->cpp; uint32_t buffer_stride = width * cpp; uint32_t buffer_offset = buffer->mem_offset + region->bufferOffset + height * buffer_stride * layer_offset; uint32_t format = choose_tlb_format(framebuffer, region->imageSubresource.aspectMask, true, true, false); bool msaa = image->vk.samples > VK_SAMPLE_COUNT_1_BIT; emit_linear_store(cl, RENDER_TARGET_0, buffer->mem->bo, buffer_offset, buffer_stride, msaa, format); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_copy_layer_to_buffer(struct v3dv_job *job, struct v3dv_buffer *buffer, struct v3dv_image *image, struct v3dv_meta_framebuffer *framebuffer, uint32_t layer, const VkBufferImageCopy2KHR *region) { emit_copy_layer_to_buffer_per_tile_list(job, framebuffer, buffer, image, layer, region); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_copy_image_to_buffer_rcl)(struct v3dv_job *job, struct v3dv_buffer *buffer, struct v3dv_image *image, struct v3dv_meta_framebuffer *framebuffer, const VkBufferImageCopy2KHR *region) { struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, NULL); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, NULL); for (int layer = 0; layer < job->frame_tiling.layers; layer++) emit_copy_layer_to_buffer(job, buffer, image, framebuffer, layer, region); cl_emit(rcl, END_OF_RENDERING, end); } static void emit_resolve_image_layer_per_tile_list(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *dst, struct v3dv_image *src, uint32_t layer_offset, const VkImageResolve2KHR *region) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); assert((src->vk.image_type != VK_IMAGE_TYPE_3D && layer_offset < region->srcSubresource.layerCount) || layer_offset < src->vk.extent.depth); const uint32_t src_layer = src->vk.image_type != VK_IMAGE_TYPE_3D ? region->srcSubresource.baseArrayLayer + layer_offset : region->srcOffset.z + layer_offset; emit_image_load(job->device, cl, framebuffer, src, region->srcSubresource.aspectMask, src_layer, region->srcSubresource.mipLevel, false, false); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); assert((dst->vk.image_type != VK_IMAGE_TYPE_3D && layer_offset < region->dstSubresource.layerCount) || layer_offset < dst->vk.extent.depth); const uint32_t dst_layer = dst->vk.image_type != VK_IMAGE_TYPE_3D ? region->dstSubresource.baseArrayLayer + layer_offset : region->dstOffset.z + layer_offset; emit_image_store(job->device, cl, framebuffer, dst, region->dstSubresource.aspectMask, dst_layer, region->dstSubresource.mipLevel, false, false, true); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_resolve_image_layer(struct v3dv_job *job, struct v3dv_image *dst, struct v3dv_image *src, struct v3dv_meta_framebuffer *framebuffer, uint32_t layer, const VkImageResolve2KHR *region) { emit_resolve_image_layer_per_tile_list(job, framebuffer, dst, src, layer, region); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_resolve_image_rcl)(struct v3dv_job *job, struct v3dv_image *dst, struct v3dv_image *src, struct v3dv_meta_framebuffer *framebuffer, const VkImageResolve2KHR *region) { struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, NULL); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, NULL); for (int layer = 0; layer < job->frame_tiling.layers; layer++) emit_resolve_image_layer(job, dst, src, framebuffer, layer, region); cl_emit(rcl, END_OF_RENDERING, end); } static void emit_copy_buffer_per_tile_list(struct v3dv_job *job, struct v3dv_bo *dst, struct v3dv_bo *src, uint32_t dst_offset, uint32_t src_offset, uint32_t stride, uint32_t format) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); emit_linear_load(cl, RENDER_TARGET_0, src, src_offset, stride, format); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); emit_linear_store(cl, RENDER_TARGET_0, dst, dst_offset, stride, false, format); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } void v3dX(meta_emit_copy_buffer)(struct v3dv_job *job, struct v3dv_bo *dst, struct v3dv_bo *src, uint32_t dst_offset, uint32_t src_offset, struct v3dv_meta_framebuffer *framebuffer, uint32_t format, uint32_t item_size) { const uint32_t stride = job->frame_tiling.width * item_size; emit_copy_buffer_per_tile_list(job, dst, src, dst_offset, src_offset, stride, format); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_copy_buffer_rcl)(struct v3dv_job *job, struct v3dv_bo *dst, struct v3dv_bo *src, uint32_t dst_offset, uint32_t src_offset, struct v3dv_meta_framebuffer *framebuffer, uint32_t format, uint32_t item_size) { struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, NULL); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, NULL); v3dX(meta_emit_copy_buffer)(job, dst, src, dst_offset, src_offset, framebuffer, format, item_size); cl_emit(rcl, END_OF_RENDERING, end); } static void emit_copy_image_layer_per_tile_list(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *dst, struct v3dv_image *src, uint32_t layer_offset, const VkImageCopy2KHR *region) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); assert((src->vk.image_type != VK_IMAGE_TYPE_3D && layer_offset < region->srcSubresource.layerCount) || layer_offset < src->vk.extent.depth); const uint32_t src_layer = src->vk.image_type != VK_IMAGE_TYPE_3D ? region->srcSubresource.baseArrayLayer + layer_offset : region->srcOffset.z + layer_offset; emit_image_load(job->device, cl, framebuffer, src, region->srcSubresource.aspectMask, src_layer, region->srcSubresource.mipLevel, false, false); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); assert((dst->vk.image_type != VK_IMAGE_TYPE_3D && layer_offset < region->dstSubresource.layerCount) || layer_offset < dst->vk.extent.depth); const uint32_t dst_layer = dst->vk.image_type != VK_IMAGE_TYPE_3D ? region->dstSubresource.baseArrayLayer + layer_offset : region->dstOffset.z + layer_offset; emit_image_store(job->device, cl, framebuffer, dst, region->dstSubresource.aspectMask, dst_layer, region->dstSubresource.mipLevel, false, false, false); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_copy_image_layer(struct v3dv_job *job, struct v3dv_image *dst, struct v3dv_image *src, struct v3dv_meta_framebuffer *framebuffer, uint32_t layer, const VkImageCopy2KHR *region) { emit_copy_image_layer_per_tile_list(job, framebuffer, dst, src, layer, region); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_copy_image_rcl)(struct v3dv_job *job, struct v3dv_image *dst, struct v3dv_image *src, struct v3dv_meta_framebuffer *framebuffer, const VkImageCopy2KHR *region) { struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, NULL); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, NULL); for (int layer = 0; layer < job->frame_tiling.layers; layer++) emit_copy_image_layer(job, dst, src, framebuffer, layer, region); cl_emit(rcl, END_OF_RENDERING, end); } void v3dX(meta_emit_tfu_job)(struct v3dv_cmd_buffer *cmd_buffer, struct v3dv_image *dst, uint32_t dst_mip_level, uint32_t dst_layer, struct v3dv_image *src, uint32_t src_mip_level, uint32_t src_layer, uint32_t width, uint32_t height, const struct v3dv_format *format) { const struct v3d_resource_slice *src_slice = &src->slices[src_mip_level]; const struct v3d_resource_slice *dst_slice = &dst->slices[dst_mip_level]; assert(dst->mem && dst->mem->bo); const struct v3dv_bo *dst_bo = dst->mem->bo; assert(src->mem && src->mem->bo); const struct v3dv_bo *src_bo = src->mem->bo; struct drm_v3d_submit_tfu tfu = { .ios = (height << 16) | width, .bo_handles = { dst_bo->handle, src_bo->handle != dst_bo->handle ? src_bo->handle : 0 }, }; const uint32_t src_offset = src_bo->offset + v3dv_layer_offset(src, src_mip_level, src_layer); tfu.iia |= src_offset; uint32_t icfg; if (src_slice->tiling == V3D_TILING_RASTER) { icfg = V3D_TFU_ICFG_FORMAT_RASTER; } else { icfg = V3D_TFU_ICFG_FORMAT_LINEARTILE + (src_slice->tiling - V3D_TILING_LINEARTILE); } tfu.icfg |= icfg << V3D_TFU_ICFG_FORMAT_SHIFT; const uint32_t dst_offset = dst_bo->offset + v3dv_layer_offset(dst, dst_mip_level, dst_layer); tfu.ioa |= dst_offset; tfu.ioa |= (V3D_TFU_IOA_FORMAT_LINEARTILE + (dst_slice->tiling - V3D_TILING_LINEARTILE)) << V3D_TFU_IOA_FORMAT_SHIFT; tfu.icfg |= format->tex_type << V3D_TFU_ICFG_TTYPE_SHIFT; switch (src_slice->tiling) { case V3D_TILING_UIF_NO_XOR: case V3D_TILING_UIF_XOR: tfu.iis |= src_slice->padded_height / (2 * v3d_utile_height(src->cpp)); break; case V3D_TILING_RASTER: tfu.iis |= src_slice->stride / src->cpp; break; default: break; } /* If we're writing level 0 (!IOA_DIMTW), then we need to supply the * OPAD field for the destination (how many extra UIF blocks beyond * those necessary to cover the height). */ if (dst_slice->tiling == V3D_TILING_UIF_NO_XOR || dst_slice->tiling == V3D_TILING_UIF_XOR) { uint32_t uif_block_h = 2 * v3d_utile_height(dst->cpp); uint32_t implicit_padded_height = align(height, uif_block_h); uint32_t icfg = (dst_slice->padded_height - implicit_padded_height) / uif_block_h; tfu.icfg |= icfg << V3D_TFU_ICFG_OPAD_SHIFT; } v3dv_cmd_buffer_add_tfu_job(cmd_buffer, &tfu); } static void emit_clear_image_layer_per_tile_list(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *image, VkImageAspectFlags aspects, uint32_t layer, uint32_t level) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); emit_image_store(job->device, cl, framebuffer, image, aspects, layer, level, false, false, false); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_clear_image_layers(struct v3dv_job *job, struct v3dv_image *image, struct v3dv_meta_framebuffer *framebuffer, VkImageAspectFlags aspects, uint32_t min_layer, uint32_t max_layer, uint32_t level) { for (uint32_t layer = min_layer; layer < max_layer; layer++) { emit_clear_image_layer_per_tile_list(job, framebuffer, image, aspects, layer, level); emit_supertile_coordinates(job, framebuffer); } } void v3dX(meta_emit_clear_image_rcl)(struct v3dv_job *job, struct v3dv_image *image, struct v3dv_meta_framebuffer *framebuffer, const union v3dv_clear_value *clear_value, VkImageAspectFlags aspects, uint32_t min_layer, uint32_t max_layer, uint32_t level) { const struct rcl_clear_info clear_info = { .clear_value = clear_value, .image = image, .aspects = aspects, .level = level, }; struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, &clear_info); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, clear_value); emit_clear_image_layers(job, image, framebuffer, aspects, min_layer, max_layer, level); cl_emit(rcl, END_OF_RENDERING, end); } static void emit_fill_buffer_per_tile_list(struct v3dv_job *job, struct v3dv_bo *bo, uint32_t offset, uint32_t stride) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); emit_linear_store(cl, RENDER_TARGET_0, bo, offset, stride, false, V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI); cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_fill_buffer(struct v3dv_job *job, struct v3dv_bo *bo, uint32_t offset, struct v3dv_meta_framebuffer *framebuffer) { const uint32_t stride = job->frame_tiling.width * 4; emit_fill_buffer_per_tile_list(job, bo, offset, stride); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_fill_buffer_rcl)(struct v3dv_job *job, struct v3dv_bo *bo, uint32_t offset, struct v3dv_meta_framebuffer *framebuffer, uint32_t data) { const union v3dv_clear_value clear_value = { .color = { data, 0, 0, 0 }, }; const struct rcl_clear_info clear_info = { .clear_value = &clear_value, .image = NULL, .aspects = VK_IMAGE_ASPECT_COLOR_BIT, .level = 0, }; struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, &clear_info); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, &clear_value); emit_fill_buffer(job, bo, offset, framebuffer); cl_emit(rcl, END_OF_RENDERING, end); } static void emit_copy_buffer_to_layer_per_tile_list(struct v3dv_job *job, struct v3dv_meta_framebuffer *framebuffer, struct v3dv_image *image, struct v3dv_buffer *buffer, uint32_t layer, const VkBufferImageCopy2KHR *region) { struct v3dv_cl *cl = &job->indirect; v3dv_cl_ensure_space(cl, 200, 1); v3dv_return_if_oom(NULL, job); struct v3dv_cl_reloc tile_list_start = v3dv_cl_get_address(cl); cl_emit(cl, TILE_COORDINATES_IMPLICIT, coords); const VkImageSubresourceLayers *imgrsc = ®ion->imageSubresource; assert((image->vk.image_type != VK_IMAGE_TYPE_3D && layer < imgrsc->layerCount) || layer < image->vk.extent.depth); /* Load TLB from buffer */ uint32_t width, height; if (region->bufferRowLength == 0) width = region->imageExtent.width; else width = region->bufferRowLength; if (region->bufferImageHeight == 0) height = region->imageExtent.height; else height = region->bufferImageHeight; /* Handle copy to compressed format using a compatible format */ width = DIV_ROUND_UP(width, vk_format_get_blockwidth(image->vk.format)); height = DIV_ROUND_UP(height, vk_format_get_blockheight(image->vk.format)); uint32_t cpp = imgrsc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT ? 1 : image->cpp; uint32_t buffer_stride = width * cpp; uint32_t buffer_offset = buffer->mem_offset + region->bufferOffset + height * buffer_stride * layer; uint32_t format = choose_tlb_format(framebuffer, imgrsc->aspectMask, false, false, true); emit_linear_load(cl, RENDER_TARGET_0, buffer->mem->bo, buffer_offset, buffer_stride, format); /* Because we can't do raster loads/stores of Z/S formats we need to * use a color tile buffer with a compatible RGBA color format instead. * However, when we are uploading a single aspect to a combined * depth/stencil image we have the problem that our tile buffer stores don't * allow us to mask out the other aspect, so we always write all four RGBA * channels to the image and we end up overwriting that other aspect with * undefined values. To work around that, we first load the aspect we are * not copying from the image memory into a proper Z/S tile buffer. Then we * do our store from the color buffer for the aspect we are copying, and * after that, we do another store from the Z/S tile buffer to restore the * other aspect to its original value. */ if (framebuffer->vk_format == VK_FORMAT_D24_UNORM_S8_UINT) { if (imgrsc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { emit_image_load(job->device, cl, framebuffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, imgrsc->baseArrayLayer + layer, imgrsc->mipLevel, false, false); } else { assert(imgrsc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT); emit_image_load(job->device, cl, framebuffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, imgrsc->baseArrayLayer + layer, imgrsc->mipLevel, false, false); } } cl_emit(cl, END_OF_LOADS, end); cl_emit(cl, BRANCH_TO_IMPLICIT_TILE_LIST, branch); /* Store TLB to image */ emit_image_store(job->device, cl, framebuffer, image, imgrsc->aspectMask, imgrsc->baseArrayLayer + layer, imgrsc->mipLevel, false, true, false); if (framebuffer->vk_format == VK_FORMAT_D24_UNORM_S8_UINT) { if (imgrsc->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) { emit_image_store(job->device, cl, framebuffer, image, VK_IMAGE_ASPECT_STENCIL_BIT, imgrsc->baseArrayLayer + layer, imgrsc->mipLevel, false, false, false); } else { assert(imgrsc->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT); emit_image_store(job->device, cl, framebuffer, image, VK_IMAGE_ASPECT_DEPTH_BIT, imgrsc->baseArrayLayer + layer, imgrsc->mipLevel, false, false, false); } } cl_emit(cl, END_OF_TILE_MARKER, end); cl_emit(cl, RETURN_FROM_SUB_LIST, ret); cl_emit(&job->rcl, START_ADDRESS_OF_GENERIC_TILE_LIST, branch) { branch.start = tile_list_start; branch.end = v3dv_cl_get_address(cl); } } static void emit_copy_buffer_to_layer(struct v3dv_job *job, struct v3dv_image *image, struct v3dv_buffer *buffer, struct v3dv_meta_framebuffer *framebuffer, uint32_t layer, const VkBufferImageCopy2KHR *region) { emit_copy_buffer_to_layer_per_tile_list(job, framebuffer, image, buffer, layer, region); emit_supertile_coordinates(job, framebuffer); } void v3dX(meta_emit_copy_buffer_to_image_rcl)(struct v3dv_job *job, struct v3dv_image *image, struct v3dv_buffer *buffer, struct v3dv_meta_framebuffer *framebuffer, const VkBufferImageCopy2KHR *region) { struct v3dv_cl *rcl = emit_rcl_prologue(job, framebuffer, NULL); v3dv_return_if_oom(NULL, job); emit_frame_setup(job, 0, NULL); for (int layer = 0; layer < job->frame_tiling.layers; layer++) emit_copy_buffer_to_layer(job, image, buffer, framebuffer, layer, region); cl_emit(rcl, END_OF_RENDERING, end); } /* Figure out a TLB size configuration for a number of pixels to process. * Beware that we can't "render" more than 4096x4096 pixels in a single job, * if the pixel count is larger than this, the caller might need to split * the job and call this function multiple times. */ static void framebuffer_size_for_pixel_count(uint32_t num_pixels, uint32_t *width, uint32_t *height) { assert(num_pixels > 0); const uint32_t max_dim_pixels = 4096; const uint32_t max_pixels = max_dim_pixels * max_dim_pixels; uint32_t w, h; if (num_pixels > max_pixels) { w = max_dim_pixels; h = max_dim_pixels; } else { w = num_pixels; h = 1; while (w > max_dim_pixels || ((w % 2) == 0 && w > 2 * h)) { w >>= 1; h <<= 1; } } assert(w <= max_dim_pixels && h <= max_dim_pixels); assert(w * h <= num_pixels); assert(w > 0 && h > 0); *width = w; *height = h; } struct v3dv_job * v3dX(meta_copy_buffer)(struct v3dv_cmd_buffer *cmd_buffer, struct v3dv_bo *dst, uint32_t dst_offset, struct v3dv_bo *src, uint32_t src_offset, const VkBufferCopy2KHR *region) { const uint32_t internal_bpp = V3D_INTERNAL_BPP_32; const uint32_t internal_type = V3D_INTERNAL_TYPE_8UI; /* Select appropriate pixel format for the copy operation based on the * size to copy and the alignment of the source and destination offsets. */ src_offset += region->srcOffset; dst_offset += region->dstOffset; uint32_t item_size = 4; while (item_size > 1 && (src_offset % item_size != 0 || dst_offset % item_size != 0)) { item_size /= 2; } while (item_size > 1 && region->size % item_size != 0) item_size /= 2; assert(region->size % item_size == 0); uint32_t num_items = region->size / item_size; assert(num_items > 0); uint32_t format; VkFormat vk_format; switch (item_size) { case 4: format = V3D_OUTPUT_IMAGE_FORMAT_RGBA8UI; vk_format = VK_FORMAT_R8G8B8A8_UINT; break; case 2: format = V3D_OUTPUT_IMAGE_FORMAT_RG8UI; vk_format = VK_FORMAT_R8G8_UINT; break; default: format = V3D_OUTPUT_IMAGE_FORMAT_R8UI; vk_format = VK_FORMAT_R8_UINT; break; } struct v3dv_job *job = NULL; while (num_items > 0) { job = v3dv_cmd_buffer_start_job(cmd_buffer, -1, V3DV_JOB_TYPE_GPU_CL); if (!job) return NULL; uint32_t width, height; framebuffer_size_for_pixel_count(num_items, &width, &height); v3dv_job_start_frame(job, width, height, 1, true, 1, internal_bpp, false); struct v3dv_meta_framebuffer framebuffer; v3dX(meta_framebuffer_init)(&framebuffer, vk_format, internal_type, &job->frame_tiling); v3dX(job_emit_binning_flush)(job); v3dX(meta_emit_copy_buffer_rcl)(job, dst, src, dst_offset, src_offset, &framebuffer, format, item_size); v3dv_cmd_buffer_finish_job(cmd_buffer); const uint32_t items_copied = width * height; const uint32_t bytes_copied = items_copied * item_size; num_items -= items_copied; src_offset += bytes_copied; dst_offset += bytes_copied; } return job; } void v3dX(meta_fill_buffer)(struct v3dv_cmd_buffer *cmd_buffer, struct v3dv_bo *bo, uint32_t offset, uint32_t size, uint32_t data) { assert(size > 0 && size % 4 == 0); assert(offset + size <= bo->size); const uint32_t internal_bpp = V3D_INTERNAL_BPP_32; const uint32_t internal_type = V3D_INTERNAL_TYPE_8UI; uint32_t num_items = size / 4; while (num_items > 0) { struct v3dv_job *job = v3dv_cmd_buffer_start_job(cmd_buffer, -1, V3DV_JOB_TYPE_GPU_CL); if (!job) return; uint32_t width, height; framebuffer_size_for_pixel_count(num_items, &width, &height); v3dv_job_start_frame(job, width, height, 1, true, 1, internal_bpp, false); struct v3dv_meta_framebuffer framebuffer; v3dX(meta_framebuffer_init)(&framebuffer, VK_FORMAT_R8G8B8A8_UINT, internal_type, &job->frame_tiling); v3dX(job_emit_binning_flush)(job); v3dX(meta_emit_fill_buffer_rcl)(job, bo, offset, &framebuffer, data); v3dv_cmd_buffer_finish_job(cmd_buffer); const uint32_t items_copied = width * height; const uint32_t bytes_copied = items_copied * 4; num_items -= items_copied; offset += bytes_copied; } } void v3dX(meta_framebuffer_init)(struct v3dv_meta_framebuffer *fb, VkFormat vk_format, uint32_t internal_type, const struct v3dv_frame_tiling *tiling) { fb->internal_type = internal_type; /* Supertile coverage always starts at 0,0 */ uint32_t supertile_w_in_pixels = tiling->tile_width * tiling->supertile_width; uint32_t supertile_h_in_pixels = tiling->tile_height * tiling->supertile_height; fb->min_x_supertile = 0; fb->min_y_supertile = 0; fb->max_x_supertile = (tiling->width - 1) / supertile_w_in_pixels; fb->max_y_supertile = (tiling->height - 1) / supertile_h_in_pixels; fb->vk_format = vk_format; fb->format = v3dX(get_format)(vk_format); fb->internal_depth_type = V3D_INTERNAL_TYPE_DEPTH_32F; if (vk_format_is_depth_or_stencil(vk_format)) fb->internal_depth_type = v3dX(get_internal_depth_type)(vk_format); }