/* * Copyright (c) 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_nir.h" #include "compiler/nir/nir_builder.h" struct lower_intrinsics_state { nir_shader *nir; nir_function_impl *impl; bool progress; nir_builder builder; }; static bool lower_cs_intrinsics_convert_block(struct lower_intrinsics_state *state, nir_block *block) { bool progress = false; nir_builder *b = &state->builder; nir_shader *nir = state->nir; /* Reuse calculated values inside the block. */ nir_ssa_def *local_index = NULL; nir_ssa_def *local_id = NULL; nir_foreach_instr_safe(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrinsic = nir_instr_as_intrinsic(instr); b->cursor = nir_after_instr(&intrinsic->instr); nir_ssa_def *sysval; switch (intrinsic->intrinsic) { case nir_intrinsic_load_workgroup_size: case nir_intrinsic_load_workgroup_id: case nir_intrinsic_load_num_workgroups: /* Convert this to 32-bit if it's not */ if (intrinsic->dest.ssa.bit_size == 64) { intrinsic->dest.ssa.bit_size = 32; sysval = nir_u2u64(b, &intrinsic->dest.ssa); nir_ssa_def_rewrite_uses_after(&intrinsic->dest.ssa, sysval, sysval->parent_instr); } continue; case nir_intrinsic_load_local_invocation_index: case nir_intrinsic_load_local_invocation_id: { /* First time we are using those, so let's calculate them. */ if (!local_index) { assert(!local_id); nir_ssa_def *subgroup_id = nir_load_subgroup_id(b); nir_ssa_def *thread_local_id = nir_imul(b, subgroup_id, nir_load_simd_width_intel(b)); nir_ssa_def *channel = nir_load_subgroup_invocation(b); nir_ssa_def *linear = nir_iadd(b, channel, thread_local_id); nir_ssa_def *size_x; nir_ssa_def *size_y; if (state->nir->info.workgroup_size_variable) { nir_ssa_def *size_xyz = nir_load_workgroup_size(b); size_x = nir_channel(b, size_xyz, 0); size_y = nir_channel(b, size_xyz, 1); } else { size_x = nir_imm_int(b, nir->info.workgroup_size[0]); size_y = nir_imm_int(b, nir->info.workgroup_size[1]); } nir_ssa_def *size_xy = nir_imul(b, size_x, size_y); /* The local invocation index and ID must respect the following * * gl_LocalInvocationID.x = * gl_LocalInvocationIndex % gl_WorkGroupSize.x; * gl_LocalInvocationID.y = * (gl_LocalInvocationIndex / gl_WorkGroupSize.x) % * gl_WorkGroupSize.y; * gl_LocalInvocationID.z = * (gl_LocalInvocationIndex / * (gl_WorkGroupSize.x * gl_WorkGroupSize.y)) % * gl_WorkGroupSize.z; * * However, the final % gl_WorkGroupSize.z does nothing unless we * accidentally end up with a gl_LocalInvocationIndex that is too * large so it can safely be omitted. */ nir_ssa_def *id_x, *id_y, *id_z; switch (state->nir->info.cs.derivative_group) { case DERIVATIVE_GROUP_NONE: if (nir->info.num_images == 0 && nir->info.num_textures == 0) { /* X-major lid order. Optimal for linear accesses only, * which are usually buffers. X,Y ordering will look like: * (0,0) (1,0) (2,0) ... (size_x-1,0) (0,1) (1,1) ... */ id_x = nir_umod(b, linear, size_x); id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y); local_index = linear; } else if (!nir->info.workgroup_size_variable && nir->info.workgroup_size[1] % 4 == 0) { /* 1x4 block X-major lid order. Same as X-major except increments in * blocks of width=1 height=4. Always optimal for tileY and usually * optimal for linear accesses. * x = (linear / 4) % size_x * y = ((linear % 4) + (linear / 4 / size_x) * 4) % size_y * X,Y ordering will look like: (0,0) (0,1) (0,2) (0,3) (1,0) (1,1) * (1,2) (1,3) (2,0) ... (size_x-1,3) (0,4) (0,5) (0,6) (0,7) (1,4) ... */ const unsigned height = 4; nir_ssa_def *block = nir_udiv_imm(b, linear, height); id_x = nir_umod(b, block, size_x); id_y = nir_umod(b, nir_iadd(b, nir_umod(b, linear, nir_imm_int(b, height)), nir_imul_imm(b, nir_udiv(b, block, size_x), height)), size_y); } else { /* Y-major lid order. Optimal for tileY accesses only, * which are usually images. X,Y ordering will look like: * (0,0) (0,1) (0,2) ... (0,size_y-1) (1,0) (1,1) ... */ id_y = nir_umod(b, linear, size_y); id_x = nir_umod(b, nir_udiv(b, linear, size_y), size_x); } id_z = nir_udiv(b, linear, size_xy); local_id = nir_vec3(b, id_x, id_y, id_z); if (!local_index) { local_index = nir_iadd(b, nir_iadd(b, id_x, nir_imul(b, id_y, size_x)), nir_imul(b, id_z, size_xy)); } break; case DERIVATIVE_GROUP_LINEAR: /* For linear, just set the local invocation index linearly, * and calculate local invocation ID from that. */ id_x = nir_umod(b, linear, size_x); id_y = nir_umod(b, nir_udiv(b, linear, size_x), size_y); id_z = nir_udiv(b, linear, size_xy); local_id = nir_vec3(b, id_x, id_y, id_z); local_index = linear; break; case DERIVATIVE_GROUP_QUADS: { /* For quads, first we figure out the 2x2 grid the invocation * belongs to -- treating extra Z layers as just more rows. * Then map that into local invocation ID (trivial) and local * invocation index. Skipping Z simplify index calculation. */ nir_ssa_def *one = nir_imm_int(b, 1); nir_ssa_def *double_size_x = nir_ishl(b, size_x, one); /* ID within a pair of rows, where each group of 4 is 2x2 quad. */ nir_ssa_def *row_pair_id = nir_umod(b, linear, double_size_x); nir_ssa_def *y_row_pairs = nir_udiv(b, linear, double_size_x); nir_ssa_def *x = nir_ior(b, nir_iand(b, row_pair_id, one), nir_iand(b, nir_ishr(b, row_pair_id, one), nir_imm_int(b, 0xfffffffe))); nir_ssa_def *y = nir_ior(b, nir_ishl(b, y_row_pairs, one), nir_iand(b, nir_ishr(b, row_pair_id, one), one)); local_id = nir_vec3(b, x, nir_umod(b, y, size_y), nir_udiv(b, y, size_y)); local_index = nir_iadd(b, x, nir_imul(b, y, size_x)); break; } default: unreachable("invalid derivative group"); } } assert(local_id); assert(local_index); if (intrinsic->intrinsic == nir_intrinsic_load_local_invocation_id) sysval = local_id; else sysval = local_index; break; } case nir_intrinsic_load_num_subgroups: { nir_ssa_def *size; if (state->nir->info.workgroup_size_variable) { nir_ssa_def *size_xyz = nir_load_workgroup_size(b); nir_ssa_def *size_x = nir_channel(b, size_xyz, 0); nir_ssa_def *size_y = nir_channel(b, size_xyz, 1); nir_ssa_def *size_z = nir_channel(b, size_xyz, 2); size = nir_imul(b, nir_imul(b, size_x, size_y), size_z); } else { size = nir_imm_int(b, nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2]); } /* Calculate the equivalent of DIV_ROUND_UP. */ nir_ssa_def *simd_width = nir_load_simd_width_intel(b); sysval = nir_udiv(b, nir_iadd_imm(b, nir_iadd(b, size, simd_width), -1), simd_width); break; } default: continue; } if (intrinsic->dest.ssa.bit_size == 64) sysval = nir_u2u64(b, sysval); nir_ssa_def_rewrite_uses(&intrinsic->dest.ssa, sysval); nir_instr_remove(&intrinsic->instr); state->progress = true; } return progress; } static void lower_cs_intrinsics_convert_impl(struct lower_intrinsics_state *state) { nir_builder_init(&state->builder, state->impl); nir_foreach_block(block, state->impl) { lower_cs_intrinsics_convert_block(state, block); } nir_metadata_preserve(state->impl, nir_metadata_block_index | nir_metadata_dominance); } bool brw_nir_lower_cs_intrinsics(nir_shader *nir) { assert(nir->info.stage == MESA_SHADER_COMPUTE || nir->info.stage == MESA_SHADER_KERNEL); struct lower_intrinsics_state state = { .nir = nir, }; /* Constraints from NV_compute_shader_derivatives. */ if (!nir->info.workgroup_size_variable) { if (nir->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) { assert(nir->info.workgroup_size[0] % 2 == 0); assert(nir->info.workgroup_size[1] % 2 == 0); } else if (nir->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) { ASSERTED unsigned workgroup_size = nir->info.workgroup_size[0] * nir->info.workgroup_size[1] * nir->info.workgroup_size[2]; assert(workgroup_size % 4 == 0); } } nir_foreach_function(function, nir) { if (function->impl) { state.impl = function->impl; lower_cs_intrinsics_convert_impl(&state); } } return state.progress; }