/* * Copyright © 2016-2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "aub_mem.h" #include "util/anon_file.h" struct bo_map { struct list_head link; struct intel_batch_decode_bo bo; bool unmap_after_use; bool ppgtt; }; struct ggtt_entry { struct rb_node node; uint64_t virt_addr; uint64_t phys_addr; }; struct phys_mem { struct rb_node node; uint64_t fd_offset; uint64_t phys_addr; uint8_t *data; const uint8_t *aub_data; }; static void add_gtt_bo_map(struct aub_mem *mem, struct intel_batch_decode_bo bo, bool ppgtt, bool unmap_after_use) { struct bo_map *m = calloc(1, sizeof(*m)); m->ppgtt = ppgtt; m->bo = bo; m->unmap_after_use = unmap_after_use; list_add(&m->link, &mem->maps); } void aub_mem_clear_bo_maps(struct aub_mem *mem) { list_for_each_entry_safe(struct bo_map, i, &mem->maps, link) { if (i->unmap_after_use) munmap((void *)i->bo.map, i->bo.size); list_del(&i->link); free(i); } } static inline struct ggtt_entry * ggtt_entry_next(struct ggtt_entry *entry) { if (!entry) return NULL; struct rb_node *node = rb_node_next(&entry->node); if (!node) return NULL; return rb_node_data(struct ggtt_entry, node, node); } static inline int cmp_uint64(uint64_t a, uint64_t b) { if (a < b) return 1; if (a > b) return -1; return 0; } static inline int cmp_ggtt_entry(const struct rb_node *node, const void *addr) { struct ggtt_entry *entry = rb_node_data(struct ggtt_entry, node, node); return cmp_uint64(entry->virt_addr, *(const uint64_t *)addr); } static struct ggtt_entry * ensure_ggtt_entry(struct aub_mem *mem, uint64_t virt_addr) { struct rb_node *node = rb_tree_search_sloppy(&mem->ggtt, &virt_addr, cmp_ggtt_entry); int cmp = 0; if (!node || (cmp = cmp_ggtt_entry(node, &virt_addr))) { struct ggtt_entry *new_entry = calloc(1, sizeof(*new_entry)); new_entry->virt_addr = virt_addr; rb_tree_insert_at(&mem->ggtt, node, &new_entry->node, cmp < 0); node = &new_entry->node; } return rb_node_data(struct ggtt_entry, node, node); } static struct ggtt_entry * search_ggtt_entry(struct aub_mem *mem, uint64_t virt_addr) { virt_addr &= ~0xfff; struct rb_node *node = rb_tree_search(&mem->ggtt, &virt_addr, cmp_ggtt_entry); if (!node) return NULL; return rb_node_data(struct ggtt_entry, node, node); } static inline int cmp_phys_mem(const struct rb_node *node, const void *addr) { struct phys_mem *mem = rb_node_data(struct phys_mem, node, node); return cmp_uint64(mem->phys_addr, *(uint64_t *)addr); } static void check_mmap_result(const void *res) { if (res != MAP_FAILED) return; if (errno == ENOMEM) { fprintf(stderr, "Not enough memory available or maximum number of mappings reached. " "Consider increasing sysctl vm.max_map_count.\n"); } else { perror("mmap"); } abort(); } static struct phys_mem * ensure_phys_mem(struct aub_mem *mem, uint64_t phys_addr) { struct rb_node *node = rb_tree_search_sloppy(&mem->mem, &phys_addr, cmp_phys_mem); int cmp = 0; if (!node || (cmp = cmp_phys_mem(node, &phys_addr))) { struct phys_mem *new_mem = calloc(1, sizeof(*new_mem)); new_mem->phys_addr = phys_addr; new_mem->fd_offset = mem->mem_fd_len; ASSERTED int ftruncate_res = ftruncate(mem->mem_fd, mem->mem_fd_len += 4096); assert(ftruncate_res == 0); new_mem->data = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED, mem->mem_fd, new_mem->fd_offset); check_mmap_result(new_mem->data); rb_tree_insert_at(&mem->mem, node, &new_mem->node, cmp < 0); node = &new_mem->node; } return rb_node_data(struct phys_mem, node, node); } static struct phys_mem * search_phys_mem(struct aub_mem *mem, uint64_t phys_addr) { phys_addr &= ~0xfff; struct rb_node *node = rb_tree_search(&mem->mem, &phys_addr, cmp_phys_mem); if (!node) return NULL; return rb_node_data(struct phys_mem, node, node); } void aub_mem_local_write(void *_mem, uint64_t address, const void *data, uint32_t size) { struct aub_mem *mem = _mem; struct intel_batch_decode_bo bo = { .map = data, .addr = address, .size = size, }; add_gtt_bo_map(mem, bo, false, false); } void aub_mem_ggtt_entry_write(void *_mem, uint64_t address, const void *_data, uint32_t _size) { struct aub_mem *mem = _mem; uint64_t virt_addr = (address / sizeof(uint64_t)) << 12; const uint64_t *data = _data; size_t size = _size / sizeof(*data); for (const uint64_t *entry = data; entry < data + size; entry++, virt_addr += 4096) { struct ggtt_entry *pt = ensure_ggtt_entry(mem, virt_addr); pt->phys_addr = *entry; } } void aub_mem_phys_write(void *_mem, uint64_t phys_address, const void *data, uint32_t size) { struct aub_mem *mem = _mem; uint32_t to_write = size; for (uint64_t page = phys_address & ~0xfff; page < phys_address + size; page += 4096) { struct phys_mem *pmem = ensure_phys_mem(mem, page); uint64_t offset = MAX2(page, phys_address) - page; uint32_t size_this_page = MIN2(to_write, 4096 - offset); to_write -= size_this_page; memcpy(pmem->data + offset, data, size_this_page); pmem->aub_data = data - offset; data = (const uint8_t *)data + size_this_page; } } void aub_mem_ggtt_write(void *_mem, uint64_t virt_address, const void *data, uint32_t size) { struct aub_mem *mem = _mem; uint32_t to_write = size; for (uint64_t page = virt_address & ~0xfff; page < virt_address + size; page += 4096) { struct ggtt_entry *entry = search_ggtt_entry(mem, page); assert(entry && entry->phys_addr & 0x1); uint64_t offset = MAX2(page, virt_address) - page; uint32_t size_this_page = MIN2(to_write, 4096 - offset); to_write -= size_this_page; uint64_t phys_page = entry->phys_addr & ~0xfff; /* Clear the validity bits. */ aub_mem_phys_write(mem, phys_page + offset, data, size_this_page); data = (const uint8_t *)data + size_this_page; } } struct intel_batch_decode_bo aub_mem_get_ggtt_bo(void *_mem, uint64_t address) { struct aub_mem *mem = _mem; struct intel_batch_decode_bo bo = {0}; list_for_each_entry(struct bo_map, i, &mem->maps, link) if (!i->ppgtt && i->bo.addr <= address && i->bo.addr + i->bo.size > address) return i->bo; address &= ~0xfff; struct ggtt_entry *start = (struct ggtt_entry *)rb_tree_search_sloppy(&mem->ggtt, &address, cmp_ggtt_entry); if (start && start->virt_addr < address) start = ggtt_entry_next(start); if (!start) return bo; struct ggtt_entry *last = start; for (struct ggtt_entry *i = ggtt_entry_next(last); i && last->virt_addr + 4096 == i->virt_addr; last = i, i = ggtt_entry_next(last)) ; bo.addr = MIN2(address, start->virt_addr); bo.size = last->virt_addr - bo.addr + 4096; bo.map = mmap(NULL, bo.size, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0); check_mmap_result(bo.map); for (struct ggtt_entry *i = start; i; i = i == last ? NULL : ggtt_entry_next(i)) { uint64_t phys_addr = i->phys_addr & ~0xfff; struct phys_mem *phys_mem = search_phys_mem(mem, phys_addr); if (!phys_mem) continue; uint32_t map_offset = i->virt_addr - address; void *res = mmap((uint8_t *)bo.map + map_offset, 4096, PROT_READ, MAP_SHARED | MAP_FIXED, mem->mem_fd, phys_mem->fd_offset); check_mmap_result(res); } add_gtt_bo_map(mem, bo, false, true); return bo; } static struct phys_mem * ppgtt_walk(struct aub_mem *mem, uint64_t pml4, uint64_t address) { uint64_t shift = 39; uint64_t addr = pml4; for (int level = 4; level > 0; level--) { struct phys_mem *table = search_phys_mem(mem, addr); if (!table) return NULL; int index = (address >> shift) & 0x1ff; uint64_t entry = ((uint64_t *)table->data)[index]; if (!(entry & 1)) return NULL; addr = entry & ~0xfff; shift -= 9; } return search_phys_mem(mem, addr); } static bool ppgtt_mapped(struct aub_mem *mem, uint64_t pml4, uint64_t address) { return ppgtt_walk(mem, pml4, address) != NULL; } struct intel_batch_decode_bo aub_mem_get_ppgtt_bo(void *_mem, uint64_t address) { struct aub_mem *mem = _mem; struct intel_batch_decode_bo bo = {0}; list_for_each_entry(struct bo_map, i, &mem->maps, link) if (i->ppgtt && i->bo.addr <= address && i->bo.addr + i->bo.size > address) return i->bo; address &= ~0xfff; if (!ppgtt_mapped(mem, mem->pml4, address)) return bo; /* Map everything until the first gap since we don't know how much the * decoder actually needs. */ uint64_t end = address; while (ppgtt_mapped(mem, mem->pml4, end)) end += 4096; bo.addr = address; bo.size = end - address; bo.map = mmap(NULL, bo.size, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0); assert(bo.map != MAP_FAILED); for (uint64_t page = address; page < end; page += 4096) { struct phys_mem *phys_mem = ppgtt_walk(mem, mem->pml4, page); void *res = mmap((uint8_t *)bo.map + (page - bo.addr), 4096, PROT_READ, MAP_SHARED | MAP_FIXED, mem->mem_fd, phys_mem->fd_offset); check_mmap_result(res); } add_gtt_bo_map(mem, bo, true, true); return bo; } bool aub_mem_init(struct aub_mem *mem) { memset(mem, 0, sizeof(*mem)); list_inithead(&mem->maps); mem->mem_fd = os_create_anonymous_file(0, "phys memory"); return mem->mem_fd != -1; } void aub_mem_fini(struct aub_mem *mem) { if (mem->mem_fd == -1) return; aub_mem_clear_bo_maps(mem); rb_tree_foreach_safe(struct ggtt_entry, entry, &mem->ggtt, node) { rb_tree_remove(&mem->ggtt, &entry->node); free(entry); } rb_tree_foreach_safe(struct phys_mem, entry, &mem->mem, node) { rb_tree_remove(&mem->mem, &entry->node); free(entry); } close(mem->mem_fd); mem->mem_fd = -1; } struct intel_batch_decode_bo aub_mem_get_phys_addr_data(struct aub_mem *mem, uint64_t phys_addr) { struct phys_mem *page = search_phys_mem(mem, phys_addr); return page ? (struct intel_batch_decode_bo) { .map = page->data, .addr = page->phys_addr, .size = 4096 } : (struct intel_batch_decode_bo) {}; } struct intel_batch_decode_bo aub_mem_get_ppgtt_addr_data(struct aub_mem *mem, uint64_t virt_addr) { struct phys_mem *page = ppgtt_walk(mem, mem->pml4, virt_addr); return page ? (struct intel_batch_decode_bo) { .map = page->data, .addr = virt_addr & ~((1ULL << 12) - 1), .size = 4096 } : (struct intel_batch_decode_bo) {}; } struct intel_batch_decode_bo aub_mem_get_ppgtt_addr_aub_data(struct aub_mem *mem, uint64_t virt_addr) { struct phys_mem *page = ppgtt_walk(mem, mem->pml4, virt_addr); return page ? (struct intel_batch_decode_bo) { .map = page->aub_data, .addr = virt_addr & ~((1ULL << 12) - 1), .size = 4096 } : (struct intel_batch_decode_bo) {}; }