/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include "util/macros.h" #include "aubinator_viewer.h" void aub_viewer_decode_ctx_init(struct aub_viewer_decode_ctx *ctx, struct aub_viewer_cfg *cfg, struct aub_viewer_decode_cfg *decode_cfg, const struct intel_device_info *devinfo, struct intel_spec *spec, struct intel_batch_decode_bo (*get_bo)(void *, bool, uint64_t), unsigned (*get_state_size)(void *, uint32_t), void *user_data) { memset(ctx, 0, sizeof(*ctx)); ctx->get_bo = get_bo; ctx->get_state_size = get_state_size; ctx->user_data = user_data; ctx->devinfo = devinfo; ctx->engine = I915_ENGINE_CLASS_RENDER; ctx->cfg = cfg; ctx->decode_cfg = decode_cfg; ctx->spec = spec; } static void aub_viewer_print_group(struct aub_viewer_decode_ctx *ctx, struct intel_group *group, uint64_t address, const void *map) { struct intel_field_iterator iter; int last_dword = -1; const uint32_t *p = (const uint32_t *) map; intel_field_iterator_init(&iter, group, p, 0, false); while (intel_field_iterator_next(&iter)) { if (ctx->decode_cfg->show_dwords) { int iter_dword = iter.end_bit / 32; if (last_dword != iter_dword) { for (int i = last_dword + 1; i <= iter_dword; i++) { ImGui::TextColored(ctx->cfg->dwords_color, "0x%012" PRIx64 ": 0x%012x : Dword %d", address + 4 * i, iter.p[i], i); } last_dword = iter_dword; } } if (!intel_field_is_header(iter.field)) { if (ctx->decode_cfg->field_filter.PassFilter(iter.name)) { if (iter.field->type.kind == intel_type::INTEL_TYPE_BOOL && iter.raw_value) { ImGui::Text("%s: ", iter.name); ImGui::SameLine(); ImGui::TextColored(ctx->cfg->boolean_color, "true"); } else { ImGui::Text("%s: %s", iter.name, iter.value); } if (iter.struct_desc) { int struct_dword = iter.start_bit / 32; uint64_t struct_address = address + 4 * struct_dword; aub_viewer_print_group(ctx, iter.struct_desc, struct_address, &p[struct_dword]); } } } } } static struct intel_batch_decode_bo ctx_get_bo(struct aub_viewer_decode_ctx *ctx, bool ppgtt, uint64_t addr) { if (intel_spec_get_gen(ctx->spec) >= intel_make_gen(8,0)) { /* On Broadwell and above, we have 48-bit addresses which consume two * dwords. Some packets require that these get stored in a "canonical * form" which means that bit 47 is sign-extended through the upper * bits. In order to correctly handle those aub dumps, we need to mask * off the top 16 bits. */ addr &= (~0ull >> 16); } struct intel_batch_decode_bo bo = ctx->get_bo(ctx->user_data, ppgtt, addr); if (intel_spec_get_gen(ctx->spec) >= intel_make_gen(8,0)) bo.addr &= (~0ull >> 16); /* We may actually have an offset into the bo */ if (bo.map != NULL) { assert(bo.addr <= addr); uint64_t offset = addr - bo.addr; bo.map = (const uint8_t *)bo.map + offset; bo.addr += offset; bo.size -= offset; } return bo; } static int update_count(struct aub_viewer_decode_ctx *ctx, uint32_t offset_from_dsba, unsigned element_dwords, unsigned guess) { unsigned size = 0; if (ctx->get_state_size) size = ctx->get_state_size(ctx->user_data, offset_from_dsba); if (size > 0) return size / (sizeof(uint32_t) * element_dwords); /* In the absence of any information, just guess arbitrarily. */ return guess; } static void ctx_disassemble_program(struct aub_viewer_decode_ctx *ctx, uint32_t ksp, const char *type) { uint64_t addr = ctx->instruction_base + ksp; struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, addr); if (!bo.map) { ImGui::TextColored(ctx->cfg->missing_color, "Shader unavailable addr=0x%012" PRIx64, addr); return; } ImGui::PushID(addr); if (ImGui::Button(type) && ctx->display_shader) ctx->display_shader(ctx->user_data, type, addr); ImGui::PopID(); } static void handle_state_base_address(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); uint64_t surface_base = 0, dynamic_base = 0, instruction_base = 0; bool surface_modify = 0, dynamic_modify = 0, instruction_modify = 0; while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Surface State Base Address") == 0) { surface_base = iter.raw_value; } else if (strcmp(iter.name, "Dynamic State Base Address") == 0) { dynamic_base = iter.raw_value; } else if (strcmp(iter.name, "Instruction Base Address") == 0) { instruction_base = iter.raw_value; } else if (strcmp(iter.name, "Surface State Base Address Modify Enable") == 0) { surface_modify = iter.raw_value; } else if (strcmp(iter.name, "Dynamic State Base Address Modify Enable") == 0) { dynamic_modify = iter.raw_value; } else if (strcmp(iter.name, "Instruction Base Address Modify Enable") == 0) { instruction_modify = iter.raw_value; } } if (dynamic_modify) ctx->dynamic_base = dynamic_base; if (surface_modify) ctx->surface_base = surface_base; if (instruction_modify) ctx->instruction_base = instruction_base; } static void dump_binding_table(struct aub_viewer_decode_ctx *ctx, uint32_t offset, int count) { struct intel_group *strct = intel_spec_find_struct(ctx->spec, "RENDER_SURFACE_STATE"); if (strct == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "did not find RENDER_SURFACE_STATE info"); return; } if (count < 0) count = update_count(ctx, offset, 1, 8); if (offset % 32 != 0 || offset >= UINT16_MAX) { ImGui::TextColored(ctx->cfg->missing_color, "invalid binding table pointer"); return; } struct intel_batch_decode_bo bind_bo = ctx_get_bo(ctx, true, ctx->surface_base + offset); if (bind_bo.map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "binding table unavailable addr=0x%012" PRIx64, ctx->surface_base + offset); return; } const uint32_t *pointers = (const uint32_t *) bind_bo.map; for (int i = 0; i < count; i++) { if (pointers[i] == 0) continue; uint64_t addr = ctx->surface_base + pointers[i]; struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, addr); uint32_t size = strct->dw_length * 4; if (pointers[i] % 32 != 0 || addr < bo.addr || addr + size >= bo.addr + bo.size) { ImGui::TextColored(ctx->cfg->missing_color, "pointer %u: %012x ", i, pointers[i]); continue; } const uint8_t *state = (const uint8_t *) bo.map + (addr - bo.addr); if (ImGui::TreeNodeEx(&pointers[i], ImGuiTreeNodeFlags_Framed, "pointer %u: %012x", i, pointers[i])) { aub_viewer_print_group(ctx, strct, addr, state); ImGui::TreePop(); } } } static void dump_samplers(struct aub_viewer_decode_ctx *ctx, uint32_t offset, int count) { struct intel_group *strct = intel_spec_find_struct(ctx->spec, "SAMPLER_STATE"); uint64_t state_addr = ctx->dynamic_base + offset; struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr); const uint8_t *state_map = (const uint8_t *) bo.map; if (state_map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "samplers unavailable addr=0x%012" PRIx64, state_addr); return; } if (offset % 32 != 0) { ImGui::TextColored(ctx->cfg->missing_color, "invalid sampler state pointer"); return; } const unsigned sampler_state_size = strct->dw_length * 4; if (count * sampler_state_size >= bo.size) { ImGui::TextColored(ctx->cfg->missing_color, "sampler state ends after bo ends"); return; } for (int i = 0; i < count; i++) { if (ImGui::TreeNodeEx(state_map, ImGuiTreeNodeFlags_Framed, "sampler state %d", i)) { aub_viewer_print_group(ctx, strct, state_addr, state_map); ImGui::TreePop(); } state_addr += sampler_state_size; state_map += sampler_state_size; } } static void handle_media_interface_descriptor_load(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_group *desc = intel_spec_find_struct(ctx->spec, "INTERFACE_DESCRIPTOR_DATA"); struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); uint32_t descriptor_offset = 0; int descriptor_count = 0; while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Interface Descriptor Data Start Address") == 0) { descriptor_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Interface Descriptor Total Length") == 0) { descriptor_count = strtol(iter.value, NULL, 16) / (desc->dw_length * 4); } } uint64_t desc_addr = ctx->dynamic_base + descriptor_offset; struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, desc_addr); const uint32_t *desc_map = (const uint32_t *) bo.map; if (desc_map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "interface descriptors unavailable addr=0x%012" PRIx64, desc_addr); return; } for (int i = 0; i < descriptor_count; i++) { ImGui::Text("descriptor %d: %012x", i, descriptor_offset); aub_viewer_print_group(ctx, desc, desc_addr, desc_map); intel_field_iterator_init(&iter, desc, desc_map, 0, false); uint64_t ksp = 0; uint32_t sampler_offset = 0, sampler_count = 0; uint32_t binding_table_offset = 0, binding_entry_count = 0; while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Kernel Start Pointer") == 0) { ksp = strtoll(iter.value, NULL, 16); } else if (strcmp(iter.name, "Sampler State Pointer") == 0) { sampler_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Sampler Count") == 0) { sampler_count = strtol(iter.value, NULL, 10); } else if (strcmp(iter.name, "Binding Table Pointer") == 0) { binding_table_offset = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "Binding Table Entry Count") == 0) { binding_entry_count = strtol(iter.value, NULL, 10); } } ctx_disassemble_program(ctx, ksp, "compute shader"); dump_samplers(ctx, sampler_offset, sampler_count); dump_binding_table(ctx, binding_table_offset, binding_entry_count); desc_map += desc->dw_length; desc_addr += desc->dw_length * 4; } } static void handle_3dstate_vertex_buffers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_group *vbs = intel_spec_find_struct(ctx->spec, "VERTEX_BUFFER_STATE"); struct intel_batch_decode_bo vb = {}; uint32_t vb_size = 0; int index = -1; int pitch = -1; bool ready = false; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (iter.struct_desc != vbs) continue; uint64_t buffer_addr = 0; struct intel_field_iterator vbs_iter; intel_field_iterator_init(&vbs_iter, vbs, &iter.p[iter.start_bit / 32], 0, false); while (intel_field_iterator_next(&vbs_iter)) { if (strcmp(vbs_iter.name, "Vertex Buffer Index") == 0) { index = vbs_iter.raw_value; } else if (strcmp(vbs_iter.name, "Buffer Pitch") == 0) { pitch = vbs_iter.raw_value; } else if (strcmp(vbs_iter.name, "Buffer Starting Address") == 0) { buffer_addr = vbs_iter.raw_value; vb = ctx_get_bo(ctx, true, buffer_addr); } else if (strcmp(vbs_iter.name, "Buffer Size") == 0) { vb_size = vbs_iter.raw_value; ready = true; } else if (strcmp(vbs_iter.name, "End Address") == 0) { if (vb.map && vbs_iter.raw_value >= vb.addr) vb_size = vbs_iter.raw_value - vb.addr; else vb_size = 0; ready = true; } if (!ready) continue; ImGui::Text("vertex buffer %d, size %d, pitch %d", index, vb_size, pitch); if (vb.map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "buffer contents unavailable addr=0x%012" PRIx64, buffer_addr); continue; } if (vb.map == 0 || vb_size == 0) continue; vb.map = NULL; vb_size = 0; index = -1; pitch = -1; ready = false; } } } static void handle_3dstate_index_buffer(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_batch_decode_bo ib = {}; uint64_t buffer_addr = 0; uint32_t ib_size = 0; uint32_t format = 0; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Index Format") == 0) { format = iter.raw_value; } else if (strcmp(iter.name, "Buffer Starting Address") == 0) { buffer_addr = iter.raw_value; ib = ctx_get_bo(ctx, true, buffer_addr); } else if (strcmp(iter.name, "Buffer Size") == 0) { ib_size = iter.raw_value; } } if (ib.map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "buffer contents unavailable addr=0x%012" PRIx64, buffer_addr); return; } const uint8_t *m = (const uint8_t *) ib.map; const uint8_t *ib_end = m + MIN2(ib.size, ib_size); for (int i = 0; m < ib_end && i < 10; i++) { switch (format) { case 0: m += 1; break; case 1: m += 2; break; case 2: m += 4; break; } } } static void decode_single_ksp(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { uint64_t ksp = 0; bool is_simd8 = false; /* vertex shaders on Gfx8+ only */ bool is_enabled = true; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Kernel Start Pointer") == 0) { ksp = iter.raw_value; } else if (strcmp(iter.name, "SIMD8 Dispatch Enable") == 0) { is_simd8 = iter.raw_value; } else if (strcmp(iter.name, "Dispatch Mode") == 0) { is_simd8 = strcmp(iter.value, "SIMD8") == 0; } else if (strcmp(iter.name, "Dispatch Enable") == 0) { is_simd8 = strcmp(iter.value, "SIMD8") == 0; } else if (strcmp(iter.name, "Enable") == 0) { is_enabled = iter.raw_value; } } const char *type = strcmp(inst->name, "VS_STATE") == 0 ? "vertex shader" : strcmp(inst->name, "GS_STATE") == 0 ? "geometry shader" : strcmp(inst->name, "SF_STATE") == 0 ? "strips and fans shader" : strcmp(inst->name, "CLIP_STATE") == 0 ? "clip shader" : strcmp(inst->name, "3DSTATE_DS") == 0 ? "tessellation evaluation shader" : strcmp(inst->name, "3DSTATE_HS") == 0 ? "tessellation control shader" : strcmp(inst->name, "3DSTATE_VS") == 0 ? (is_simd8 ? "SIMD8 vertex shader" : "vec4 vertex shader") : strcmp(inst->name, "3DSTATE_GS") == 0 ? (is_simd8 ? "SIMD8 geometry shader" : "vec4 geometry shader") : NULL; if (is_enabled) ctx_disassemble_program(ctx, ksp, type); } static void decode_ps_kernels(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { uint64_t ksp[3] = {0, 0, 0}; bool enabled[3] = {false, false, false}; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (strncmp(iter.name, "Kernel Start Pointer ", strlen("Kernel Start Pointer ")) == 0) { int idx = iter.name[strlen("Kernel Start Pointer ")] - '0'; ksp[idx] = strtol(iter.value, NULL, 16); } else if (strcmp(iter.name, "8 Pixel Dispatch Enable") == 0) { enabled[0] = strcmp(iter.value, "true") == 0; } else if (strcmp(iter.name, "16 Pixel Dispatch Enable") == 0) { enabled[1] = strcmp(iter.value, "true") == 0; } else if (strcmp(iter.name, "32 Pixel Dispatch Enable") == 0) { enabled[2] = strcmp(iter.value, "true") == 0; } } /* Reorder KSPs to be [8, 16, 32] instead of the hardware order. */ if (enabled[0] + enabled[1] + enabled[2] == 1) { if (enabled[1]) { ksp[1] = ksp[0]; ksp[0] = 0; } else if (enabled[2]) { ksp[2] = ksp[0]; ksp[0] = 0; } } else { uint64_t tmp = ksp[1]; ksp[1] = ksp[2]; ksp[2] = tmp; } if (enabled[0]) ctx_disassemble_program(ctx, ksp[0], "SIMD8 fragment shader"); if (enabled[1]) ctx_disassemble_program(ctx, ksp[1], "SIMD16 fragment shader"); if (enabled[2]) ctx_disassemble_program(ctx, ksp[2], "SIMD32 fragment shader"); } static void decode_3dstate_constant(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_group *body = intel_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY"); uint32_t read_length[4] = {0}; uint64_t read_addr[4]; struct intel_field_iterator outer; intel_field_iterator_init(&outer, inst, p, 0, false); while (intel_field_iterator_next(&outer)) { if (outer.struct_desc != body) continue; struct intel_field_iterator iter; intel_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32], 0, false); while (intel_field_iterator_next(&iter)) { int idx; if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) { read_length[idx] = iter.raw_value; } else if (sscanf(iter.name, "Buffer[%d]", &idx) == 1) { read_addr[idx] = iter.raw_value; } } for (int i = 0; i < 4; i++) { if (read_length[i] == 0) continue; struct intel_batch_decode_bo buffer = ctx_get_bo(ctx, true, read_addr[i]); if (!buffer.map) { ImGui::TextColored(ctx->cfg->missing_color, "constant buffer %d unavailable addr=0x%012" PRIx64, i, read_addr[i]); continue; } unsigned size = read_length[i] * 32; ImGui::Text("constant buffer %d, size %u", i, size); if (ctx->edit_address) { if (ImGui::Button("Show/Edit buffer")) ctx->edit_address(ctx->user_data, read_addr[i], size); } } } } static void decode_3dstate_binding_table_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { dump_binding_table(ctx, p[1], -1); } static void decode_3dstate_sampler_state_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { dump_samplers(ctx, p[1], 1); } static void decode_3dstate_sampler_state_pointers_gfx6(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { dump_samplers(ctx, p[1], 1); dump_samplers(ctx, p[2], 1); dump_samplers(ctx, p[3], 1); } static bool str_ends_with(const char *str, const char *end) { int offset = strlen(str) - strlen(end); if (offset < 0) return false; return strcmp(str + offset, end) == 0; } static void decode_dynamic_state_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p, const char *struct_type, int count) { uint32_t state_offset = 0; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (str_ends_with(iter.name, "Pointer")) { state_offset = iter.raw_value; break; } } uint64_t state_addr = ctx->dynamic_base + state_offset; struct intel_batch_decode_bo bo = ctx_get_bo(ctx, true, state_addr); const uint8_t *state_map = (const uint8_t *) bo.map; if (state_map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "dynamic %s state unavailable addr=0x%012" PRIx64, struct_type, state_addr); return; } struct intel_group *state = intel_spec_find_struct(ctx->spec, struct_type); if (strcmp(struct_type, "BLEND_STATE") == 0) { /* Blend states are different from the others because they have a header * struct called BLEND_STATE which is followed by a variable number of * BLEND_STATE_ENTRY structs. */ ImGui::Text("%s", struct_type); aub_viewer_print_group(ctx, state, state_addr, state_map); state_addr += state->dw_length * 4; state_map += state->dw_length * 4; struct_type = "BLEND_STATE_ENTRY"; state = intel_spec_find_struct(ctx->spec, struct_type); } for (int i = 0; i < count; i++) { ImGui::Text("%s %d", struct_type, i); aub_viewer_print_group(ctx, state, state_addr, state_map); state_addr += state->dw_length * 4; state_map += state->dw_length * 4; } } static void decode_3dstate_viewport_state_pointers_cc(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { decode_dynamic_state_pointers(ctx, inst, p, "CC_VIEWPORT", 4); } static void decode_3dstate_viewport_state_pointers_sf_clip(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { decode_dynamic_state_pointers(ctx, inst, p, "SF_CLIP_VIEWPORT", 4); } static void decode_3dstate_blend_state_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { decode_dynamic_state_pointers(ctx, inst, p, "BLEND_STATE", 1); } static void decode_3dstate_cc_state_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { decode_dynamic_state_pointers(ctx, inst, p, "COLOR_CALC_STATE", 1); } static void decode_3dstate_scissor_state_pointers(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { decode_dynamic_state_pointers(ctx, inst, p, "SCISSOR_RECT", 1); } static void decode_load_register_imm(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_group *reg = intel_spec_find_register(ctx->spec, p[1]); if (reg != NULL && ImGui::TreeNodeEx(&p[1], ImGuiTreeNodeFlags_Framed, "%s (0x%x) = 0x%x", reg->name, reg->register_offset, p[2])) { aub_viewer_print_group(ctx, reg, reg->register_offset, &p[2]); ImGui::TreePop(); } } static void decode_3dprimitive(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { if (ctx->display_urb) { if (ImGui::Button("Show URB")) ctx->display_urb(ctx->user_data, ctx->urb_stages); } } static void handle_urb(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (strstr(iter.name, "URB Starting Address")) { ctx->urb_stages[ctx->stage].start = iter.raw_value * 8192; } else if (strstr(iter.name, "URB Entry Allocation Size")) { ctx->urb_stages[ctx->stage].size = (iter.raw_value + 1) * 64; } else if (strstr(iter.name, "Number of URB Entries")) { ctx->urb_stages[ctx->stage].n_entries = iter.raw_value; } } ctx->end_urb_offset = MAX2(ctx->urb_stages[ctx->stage].start + ctx->urb_stages[ctx->stage].n_entries * ctx->urb_stages[ctx->stage].size, ctx->end_urb_offset); } static void handle_urb_read(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { /* Workaround the "Force * URB Entry Read Length" fields */ if (iter.end_bit - iter.start_bit < 2) continue; if (strstr(iter.name, "URB Entry Read Offset")) { ctx->urb_stages[ctx->stage].rd_offset = iter.raw_value * 32; } else if (strstr(iter.name, "URB Entry Read Length")) { ctx->urb_stages[ctx->stage].rd_length = iter.raw_value * 32; } else if (strstr(iter.name, "URB Entry Output Read Offset")) { ctx->urb_stages[ctx->stage].wr_offset = iter.raw_value * 32; } else if (strstr(iter.name, "URB Entry Output Length")) { ctx->urb_stages[ctx->stage].wr_length = iter.raw_value * 32; } } } static void handle_urb_constant(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p) { struct intel_group *body = intel_spec_find_struct(ctx->spec, "3DSTATE_CONSTANT_BODY"); struct intel_field_iterator outer; intel_field_iterator_init(&outer, inst, p, 0, false); while (intel_field_iterator_next(&outer)) { if (outer.struct_desc != body) continue; struct intel_field_iterator iter; intel_field_iterator_init(&iter, body, &outer.p[outer.start_bit / 32], 0, false); ctx->urb_stages[ctx->stage].const_rd_length = 0; while (intel_field_iterator_next(&iter)) { int idx; if (sscanf(iter.name, "Read Length[%d]", &idx) == 1) { ctx->urb_stages[ctx->stage].const_rd_length += iter.raw_value * 32; } } } } struct custom_decoder { const char *cmd_name; void (*decode)(struct aub_viewer_decode_ctx *ctx, struct intel_group *inst, const uint32_t *p); enum aub_decode_stage stage; } display_decoders[] = { { "STATE_BASE_ADDRESS", handle_state_base_address }, { "MEDIA_INTERFACE_DESCRIPTOR_LOAD", handle_media_interface_descriptor_load }, { "3DSTATE_VERTEX_BUFFERS", handle_3dstate_vertex_buffers }, { "3DSTATE_INDEX_BUFFER", handle_3dstate_index_buffer }, { "3DSTATE_VS", decode_single_ksp, AUB_DECODE_STAGE_VS, }, { "3DSTATE_GS", decode_single_ksp, AUB_DECODE_STAGE_GS, }, { "3DSTATE_DS", decode_single_ksp, AUB_DECODE_STAGE_DS, }, { "3DSTATE_HS", decode_single_ksp, AUB_DECODE_STAGE_HS, }, { "3DSTATE_PS", decode_ps_kernels, AUB_DECODE_STAGE_PS, }, { "3DSTATE_CONSTANT_VS", decode_3dstate_constant, AUB_DECODE_STAGE_VS, }, { "3DSTATE_CONSTANT_GS", decode_3dstate_constant, AUB_DECODE_STAGE_GS, }, { "3DSTATE_CONSTANT_DS", decode_3dstate_constant, AUB_DECODE_STAGE_DS, }, { "3DSTATE_CONSTANT_HS", decode_3dstate_constant, AUB_DECODE_STAGE_HS, }, { "3DSTATE_CONSTANT_PS", decode_3dstate_constant, AUB_DECODE_STAGE_PS, }, { "3DSTATE_BINDING_TABLE_POINTERS_VS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_VS, }, { "3DSTATE_BINDING_TABLE_POINTERS_GS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_GS, }, { "3DSTATE_BINDING_TABLE_POINTERS_HS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_HS, }, { "3DSTATE_BINDING_TABLE_POINTERS_DS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_DS, }, { "3DSTATE_BINDING_TABLE_POINTERS_PS", decode_3dstate_binding_table_pointers, AUB_DECODE_STAGE_PS, }, { "3DSTATE_SAMPLER_STATE_POINTERS_VS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_VS, }, { "3DSTATE_SAMPLER_STATE_POINTERS_GS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_GS, }, { "3DSTATE_SAMPLER_STATE_POINTERS_DS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_DS, }, { "3DSTATE_SAMPLER_STATE_POINTERS_HS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_HS, }, { "3DSTATE_SAMPLER_STATE_POINTERS_PS", decode_3dstate_sampler_state_pointers, AUB_DECODE_STAGE_PS, }, { "3DSTATE_SAMPLER_STATE_POINTERS", decode_3dstate_sampler_state_pointers_gfx6 }, { "3DSTATE_VIEWPORT_STATE_POINTERS_CC", decode_3dstate_viewport_state_pointers_cc }, { "3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP", decode_3dstate_viewport_state_pointers_sf_clip }, { "3DSTATE_BLEND_STATE_POINTERS", decode_3dstate_blend_state_pointers }, { "3DSTATE_CC_STATE_POINTERS", decode_3dstate_cc_state_pointers }, { "3DSTATE_SCISSOR_STATE_POINTERS", decode_3dstate_scissor_state_pointers }, { "MI_LOAD_REGISTER_IMM", decode_load_register_imm }, { "3DPRIMITIVE", decode_3dprimitive }, }; struct custom_decoder info_decoders[] = { { "STATE_BASE_ADDRESS", handle_state_base_address }, { "3DSTATE_URB_VS", handle_urb, AUB_DECODE_STAGE_VS, }, { "3DSTATE_URB_GS", handle_urb, AUB_DECODE_STAGE_GS, }, { "3DSTATE_URB_DS", handle_urb, AUB_DECODE_STAGE_DS, }, { "3DSTATE_URB_HS", handle_urb, AUB_DECODE_STAGE_HS, }, { "3DSTATE_VS", handle_urb_read, AUB_DECODE_STAGE_VS, }, { "3DSTATE_GS", handle_urb_read, AUB_DECODE_STAGE_GS, }, { "3DSTATE_DS", handle_urb_read, AUB_DECODE_STAGE_DS, }, { "3DSTATE_HS", handle_urb_read, AUB_DECODE_STAGE_HS, }, { "3DSTATE_PS", handle_urb_read, AUB_DECODE_STAGE_PS, }, { "3DSTATE_CONSTANT_VS", handle_urb_constant, AUB_DECODE_STAGE_VS, }, { "3DSTATE_CONSTANT_GS", handle_urb_constant, AUB_DECODE_STAGE_GS, }, { "3DSTATE_CONSTANT_DS", handle_urb_constant, AUB_DECODE_STAGE_DS, }, { "3DSTATE_CONSTANT_HS", handle_urb_constant, AUB_DECODE_STAGE_HS, }, { "3DSTATE_CONSTANT_PS", handle_urb_constant, AUB_DECODE_STAGE_PS, }, }; void aub_viewer_render_batch(struct aub_viewer_decode_ctx *ctx, const void *_batch, uint32_t batch_size, uint64_t batch_addr, bool from_ring) { struct intel_group *inst; const uint32_t *p, *batch = (const uint32_t *) _batch, *end = batch + batch_size / sizeof(uint32_t); int length; if (ctx->n_batch_buffer_start >= 100) { ImGui::TextColored(ctx->cfg->error_color, "0x%08" PRIx64 ": Max batch buffer jumps exceeded", batch_addr); return; } ctx->n_batch_buffer_start++; for (p = batch; p < end; p += length) { inst = intel_spec_find_instruction(ctx->spec, ctx->engine, p); length = intel_group_get_length(inst, p); assert(inst == NULL || length > 0); length = MAX2(1, length); uint64_t offset = batch_addr + ((char *)p - (char *)batch); if (inst == NULL) { ImGui::TextColored(ctx->cfg->error_color, "0x%012" PRIx64 ": unknown instruction %012x", offset, p[0]); continue; } const char *inst_name = intel_group_get_name(inst); for (unsigned i = 0; i < ARRAY_SIZE(info_decoders); i++) { if (strcmp(inst_name, info_decoders[i].cmd_name) == 0) { ctx->stage = info_decoders[i].stage; info_decoders[i].decode(ctx, inst, p); break; } } if (ctx->decode_cfg->command_filter.PassFilter(inst->name) && ImGui::TreeNodeEx(p, ImGuiTreeNodeFlags_Framed, "0x%012" PRIx64 ": %s", offset, inst->name)) { aub_viewer_print_group(ctx, inst, offset, p); for (unsigned i = 0; i < ARRAY_SIZE(display_decoders); i++) { if (strcmp(inst_name, display_decoders[i].cmd_name) == 0) { ctx->stage = display_decoders[i].stage; display_decoders[i].decode(ctx, inst, p); break; } } if (ctx->edit_address) { if (ImGui::Button("Edit instruction")) ctx->edit_address(ctx->user_data, offset, length * 4); } ImGui::TreePop(); } if (strcmp(inst_name, "MI_BATCH_BUFFER_START") == 0) { uint64_t next_batch_addr = 0xd0d0d0d0; bool ppgtt = false; bool second_level = false; struct intel_field_iterator iter; intel_field_iterator_init(&iter, inst, p, 0, false); while (intel_field_iterator_next(&iter)) { if (strcmp(iter.name, "Batch Buffer Start Address") == 0) { next_batch_addr = iter.raw_value; } else if (strcmp(iter.name, "Second Level Batch Buffer") == 0) { second_level = iter.raw_value; } else if (strcmp(iter.name, "Address Space Indicator") == 0) { ppgtt = iter.raw_value; } } struct intel_batch_decode_bo next_batch = ctx_get_bo(ctx, ppgtt, next_batch_addr); if (next_batch.map == NULL) { ImGui::TextColored(ctx->cfg->missing_color, "Secondary batch at 0x%012" PRIx64 " unavailable", next_batch_addr); } else { aub_viewer_render_batch(ctx, next_batch.map, next_batch.size, next_batch.addr, false); } if (second_level) { /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" set acts * like a subroutine call. Commands that come afterwards get * processed once the 2nd level batch buffer returns with * MI_BATCH_BUFFER_END. */ continue; } else if (!from_ring) { /* MI_BATCH_BUFFER_START with "2nd Level Batch Buffer" unset acts * like a goto. Nothing after it will ever get processed. In * order to prevent the recursion from growing, we just reset the * loop and continue; */ break; } } else if (strcmp(inst_name, "MI_BATCH_BUFFER_END") == 0) { break; } } ctx->n_batch_buffer_start--; }