/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include "anv_private.h" #include "common/intel_defines.h" #include "common/intel_gem.h" #include "drm-uapi/sync_file.h" /** * Wrapper around DRM_IOCTL_I915_GEM_CREATE. * * Return gem handle, or 0 on failure. Gem handles are never 0. */ uint32_t anv_gem_create(struct anv_device *device, uint64_t size) { struct drm_i915_gem_create gem_create = { .size = size, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CREATE, &gem_create); if (ret != 0) { /* FIXME: What do we do if this fails? */ return 0; } return gem_create.handle; } void anv_gem_close(struct anv_device *device, uint32_t gem_handle) { struct drm_gem_close close = { .handle = gem_handle, }; intel_ioctl(device->fd, DRM_IOCTL_GEM_CLOSE, &close); } uint32_t anv_gem_create_regions(struct anv_device *device, uint64_t anv_bo_size, uint32_t num_regions, struct drm_i915_gem_memory_class_instance *regions) { struct drm_i915_gem_create_ext_memory_regions ext_regions = { .base = { .name = I915_GEM_CREATE_EXT_MEMORY_REGIONS }, .num_regions = num_regions, .regions = (uintptr_t)regions, }; struct drm_i915_gem_create_ext gem_create = { .size = anv_bo_size, .extensions = (uintptr_t) &ext_regions, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CREATE_EXT, &gem_create); if (ret != 0) { return 0; } return gem_create.handle; } /** * Wrapper around DRM_IOCTL_I915_GEM_MMAP. Returns MAP_FAILED on error. */ static void* anv_gem_mmap_offset(struct anv_device *device, uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags) { struct drm_i915_gem_mmap_offset gem_mmap = { .handle = gem_handle, .flags = device->info.has_local_mem ? I915_MMAP_OFFSET_FIXED : (flags & I915_MMAP_WC) ? I915_MMAP_OFFSET_WC : I915_MMAP_OFFSET_WB, }; assert(offset == 0); /* Get the fake offset back */ int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_MMAP_OFFSET, &gem_mmap); if (ret != 0) return MAP_FAILED; /* And map it */ void *map = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, device->fd, gem_mmap.offset); return map; } static void* anv_gem_mmap_legacy(struct anv_device *device, uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags) { assert(!device->info.has_local_mem); struct drm_i915_gem_mmap gem_mmap = { .handle = gem_handle, .offset = offset, .size = size, .flags = flags, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_MMAP, &gem_mmap); if (ret != 0) return MAP_FAILED; return (void *)(uintptr_t) gem_mmap.addr_ptr; } /** * Wrapper around DRM_IOCTL_I915_GEM_MMAP. Returns MAP_FAILED on error. */ void* anv_gem_mmap(struct anv_device *device, uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags) { void *map; if (device->physical->has_mmap_offset) map = anv_gem_mmap_offset(device, gem_handle, offset, size, flags); else map = anv_gem_mmap_legacy(device, gem_handle, offset, size, flags); if (map != MAP_FAILED) VG(VALGRIND_MALLOCLIKE_BLOCK(map, size, 0, 1)); return map; } /* This is just a wrapper around munmap, but it also notifies valgrind that * this map is no longer valid. Pair this with anv_gem_mmap(). */ void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size) { VG(VALGRIND_FREELIKE_BLOCK(p, 0)); munmap(p, size); } uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size) { struct drm_i915_gem_userptr userptr = { .user_ptr = (__u64)((unsigned long) mem), .user_size = size, .flags = 0, }; if (device->physical->has_userptr_probe) userptr.flags |= I915_USERPTR_PROBE; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr); if (ret == -1) return 0; return userptr.handle; } int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching) { struct drm_i915_gem_caching gem_caching = { .handle = gem_handle, .caching = caching, }; return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_CACHING, &gem_caching); } int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle, uint32_t read_domains, uint32_t write_domain) { struct drm_i915_gem_set_domain gem_set_domain = { .handle = gem_handle, .read_domains = read_domains, .write_domain = write_domain, }; return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &gem_set_domain); } /** * Returns 0, 1, or negative to indicate error */ int anv_gem_busy(struct anv_device *device, uint32_t gem_handle) { struct drm_i915_gem_busy busy = { .handle = gem_handle, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); if (ret < 0) return ret; return busy.busy != 0; } /** * On error, \a timeout_ns holds the remaining time. */ int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns) { struct drm_i915_gem_wait wait = { .bo_handle = gem_handle, .timeout_ns = *timeout_ns, .flags = 0, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); *timeout_ns = wait.timeout_ns; return ret; } int anv_gem_execbuffer(struct anv_device *device, struct drm_i915_gem_execbuffer2 *execbuf) { if (execbuf->flags & I915_EXEC_FENCE_OUT) return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, execbuf); else return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, execbuf); } /** Return -1 on error. */ int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle) { struct drm_i915_gem_get_tiling get_tiling = { .handle = gem_handle, }; /* FIXME: On discrete platforms we don't have DRM_IOCTL_I915_GEM_GET_TILING * anymore, so we will need another way to get the tiling. Apparently this * is only used in Android code, so we may need some other way to * communicate the tiling mode. */ if (intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) { assert(!"Failed to get BO tiling"); return -1; } return get_tiling.tiling_mode; } int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle, uint32_t stride, uint32_t tiling) { int ret; /* On discrete platforms we don't have DRM_IOCTL_I915_GEM_SET_TILING. So * nothing needs to be done. */ if (!device->info.has_tiling_uapi) return 0; /* set_tiling overwrites the input on the error path, so we have to open * code intel_ioctl. */ do { struct drm_i915_gem_set_tiling set_tiling = { .handle = gem_handle, .tiling_mode = tiling, .stride = stride, }; ret = ioctl(device->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); return ret; } int anv_gem_get_param(int fd, uint32_t param) { int tmp; drm_i915_getparam_t gp = { .param = param, .value = &tmp, }; int ret = intel_ioctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); if (ret == 0) return tmp; return 0; } uint64_t anv_gem_get_drm_cap(int fd, uint32_t capability) { struct drm_get_cap cap = { .capability = capability, }; intel_ioctl(fd, DRM_IOCTL_GET_CAP, &cap); return cap.value; } bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling) { struct drm_gem_close close; int ret; struct drm_i915_gem_create gem_create = { .size = 4096, }; if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_CREATE, &gem_create)) { assert(!"Failed to create GEM BO"); return false; } bool swizzled = false; /* set_tiling overwrites the input on the error path, so we have to open * code intel_ioctl. */ do { struct drm_i915_gem_set_tiling set_tiling = { .handle = gem_create.handle, .tiling_mode = tiling, .stride = tiling == I915_TILING_X ? 512 : 128, }; ret = ioctl(fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling); } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); if (ret != 0) { assert(!"Failed to set BO tiling"); goto close_and_return; } struct drm_i915_gem_get_tiling get_tiling = { .handle = gem_create.handle, }; if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling)) { assert(!"Failed to get BO tiling"); goto close_and_return; } swizzled = get_tiling.swizzle_mode != I915_BIT_6_SWIZZLE_NONE; close_and_return: memset(&close, 0, sizeof(close)); close.handle = gem_create.handle; intel_ioctl(fd, DRM_IOCTL_GEM_CLOSE, &close); return swizzled; } bool anv_gem_has_context_priority(int fd) { return !anv_gem_set_context_param(fd, 0, I915_CONTEXT_PARAM_PRIORITY, INTEL_CONTEXT_MEDIUM_PRIORITY); } int anv_gem_create_context(struct anv_device *device) { struct drm_i915_gem_context_create create = { 0 }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); if (ret == -1) return -1; return create.ctx_id; } int anv_gem_create_context_engines(struct anv_device *device, const struct drm_i915_query_engine_info *info, int num_engines, uint16_t *engine_classes) { const size_t engine_inst_sz = 2 * sizeof(__u16); /* 1 class, 1 instance */ const size_t engines_param_size = sizeof(__u64) /* extensions */ + num_engines * engine_inst_sz; void *engines_param = malloc(engines_param_size); assert(engines_param); *(__u64*)engines_param = 0; __u16 *class_inst_ptr = (__u16*)(((__u64*)engines_param) + 1); /* For each type of drm_i915_gem_engine_class of interest, we keep track of * the previous engine instance used. */ int last_engine_idx[] = { [I915_ENGINE_CLASS_RENDER] = -1, }; int i915_engine_counts[] = { [I915_ENGINE_CLASS_RENDER] = anv_gem_count_engines(info, I915_ENGINE_CLASS_RENDER), }; /* For each queue, we look for the next instance that matches the class we * need. */ for (int i = 0; i < num_engines; i++) { uint16_t engine_class = engine_classes[i]; if (i915_engine_counts[engine_class] <= 0) { free(engines_param); return -1; } /* Run through the engines reported by the kernel looking for the next * matching instance. We loop in case we want to create multiple * contexts on an engine instance. */ int engine_instance = -1; for (int i = 0; i < info->num_engines; i++) { int *idx = &last_engine_idx[engine_class]; if (++(*idx) >= info->num_engines) *idx = 0; if (info->engines[*idx].engine.engine_class == engine_class) { engine_instance = info->engines[*idx].engine.engine_instance; break; } } if (engine_instance < 0) { free(engines_param); return -1; } *class_inst_ptr++ = engine_class; *class_inst_ptr++ = engine_instance; } assert((uintptr_t)engines_param + engines_param_size == (uintptr_t)class_inst_ptr); struct drm_i915_gem_context_create_ext_setparam set_engines = { .base = { .name = I915_CONTEXT_CREATE_EXT_SETPARAM, }, .param = { .param = I915_CONTEXT_PARAM_ENGINES, .value = (uintptr_t)engines_param, .size = engines_param_size, } }; struct drm_i915_gem_context_create_ext create = { .flags = I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS, .extensions = (uintptr_t)&set_engines, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT, &create); free(engines_param); if (ret == -1) return -1; return create.ctx_id; } int anv_gem_destroy_context(struct anv_device *device, int context) { struct drm_i915_gem_context_destroy destroy = { .ctx_id = context, }; return intel_ioctl(device->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &destroy); } int anv_gem_set_context_param(int fd, int context, uint32_t param, uint64_t value) { struct drm_i915_gem_context_param p = { .ctx_id = context, .param = param, .value = value, }; int err = 0; if (intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p)) err = -errno; return err; } int anv_gem_get_context_param(int fd, int context, uint32_t param, uint64_t *value) { struct drm_i915_gem_context_param gp = { .ctx_id = context, .param = param, }; int ret = intel_ioctl(fd, DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM, &gp); if (ret == -1) return -1; *value = gp.value; return 0; } int anv_gem_context_get_reset_stats(int fd, int context, uint32_t *active, uint32_t *pending) { struct drm_i915_reset_stats stats = { .ctx_id = context, }; int ret = intel_ioctl(fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats); if (ret == 0) { *active = stats.batch_active; *pending = stats.batch_pending; } return ret; } int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle) { struct drm_prime_handle args = { .handle = gem_handle, .flags = DRM_CLOEXEC | DRM_RDWR, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &args); if (ret == -1) return -1; return args.fd; } uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd) { struct drm_prime_handle args = { .fd = fd, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &args); if (ret == -1) return 0; return args.handle; } int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result) { struct drm_i915_reg_read args = { .offset = offset }; int ret = intel_ioctl(fd, DRM_IOCTL_I915_REG_READ, &args); *result = args.val; return ret; } int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2) { struct sync_merge_data args = { .name = "anv merge fence", .fd2 = fd2, .fence = -1, }; int ret = intel_ioctl(fd1, SYNC_IOC_MERGE, &args); if (ret == -1) return -1; return args.fence; } uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags) { struct drm_syncobj_create args = { .flags = flags, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_CREATE, &args); if (ret) return 0; return args.handle; } void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle) { struct drm_syncobj_destroy args = { .handle = handle, }; intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_DESTROY, &args); } int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle) { struct drm_syncobj_handle args = { .handle = handle, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args); if (ret) return -1; return args.fd; } uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd) { struct drm_syncobj_handle args = { .fd = fd, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &args); if (ret) return 0; return args.handle; } int anv_gem_syncobj_export_sync_file(struct anv_device *device, uint32_t handle) { struct drm_syncobj_handle args = { .handle = handle, .flags = DRM_SYNCOBJ_HANDLE_TO_FD_FLAGS_EXPORT_SYNC_FILE, }; int ret = intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_HANDLE_TO_FD, &args); if (ret) return -1; return args.fd; } int anv_gem_syncobj_import_sync_file(struct anv_device *device, uint32_t handle, int fd) { struct drm_syncobj_handle args = { .handle = handle, .fd = fd, .flags = DRM_SYNCOBJ_FD_TO_HANDLE_FLAGS_IMPORT_SYNC_FILE, }; return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_FD_TO_HANDLE, &args); } void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle) { struct drm_syncobj_array args = { .handles = (uint64_t)(uintptr_t)&handle, .count_handles = 1, }; intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_RESET, &args); } bool anv_gem_supports_syncobj_wait(int fd) { return intel_gem_supports_syncobj_wait(fd); } int anv_gem_syncobj_wait(struct anv_device *device, const uint32_t *handles, uint32_t num_handles, int64_t abs_timeout_ns, bool wait_all) { struct drm_syncobj_wait args = { .handles = (uint64_t)(uintptr_t)handles, .count_handles = num_handles, .timeout_nsec = abs_timeout_ns, .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT, }; if (wait_all) args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL; return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_WAIT, &args); } int anv_gem_syncobj_timeline_wait(struct anv_device *device, const uint32_t *handles, const uint64_t *points, uint32_t num_items, int64_t abs_timeout_ns, bool wait_all, bool wait_materialize) { assert(device->physical->has_syncobj_wait_available); struct drm_syncobj_timeline_wait args = { .handles = (uint64_t)(uintptr_t)handles, .points = (uint64_t)(uintptr_t)points, .count_handles = num_items, .timeout_nsec = abs_timeout_ns, .flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT, }; if (wait_all) args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_ALL; if (wait_materialize) args.flags |= DRM_SYNCOBJ_WAIT_FLAGS_WAIT_AVAILABLE; return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_TIMELINE_WAIT, &args); } int anv_gem_syncobj_timeline_signal(struct anv_device *device, const uint32_t *handles, const uint64_t *points, uint32_t num_items) { assert(device->physical->has_syncobj_wait_available); struct drm_syncobj_timeline_array args = { .handles = (uint64_t)(uintptr_t)handles, .points = (uint64_t)(uintptr_t)points, .count_handles = num_items, }; return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_TIMELINE_SIGNAL, &args); } int anv_gem_syncobj_timeline_query(struct anv_device *device, const uint32_t *handles, uint64_t *points, uint32_t num_items) { assert(device->physical->has_syncobj_wait_available); struct drm_syncobj_timeline_array args = { .handles = (uint64_t)(uintptr_t)handles, .points = (uint64_t)(uintptr_t)points, .count_handles = num_items, }; return intel_ioctl(device->fd, DRM_IOCTL_SYNCOBJ_QUERY, &args); } struct drm_i915_query_engine_info * anv_gem_get_engine_info(int fd) { return intel_i915_query_alloc(fd, DRM_I915_QUERY_ENGINE_INFO); } int anv_gem_count_engines(const struct drm_i915_query_engine_info *info, uint16_t engine_class) { int count = 0; for (int i = 0; i < info->num_engines; i++) { if (info->engines[i].engine.engine_class == engine_class) count++; } return count; }