/*- * BSD LICENSE * * Copyright (c) 2015-2017 Amazon.com, Inc. or its affiliates. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef _KERNEL_OPT #include "opt_net_mpsafe.h" #endif #include #if 0 __FBSDID("$FreeBSD: head/sys/dev/ena/ena.c 333456 2018-05-10 09:37:54Z mw $"); #endif __KERNEL_RCSID(0, "$NetBSD: if_ena.c,v 1.15.2.4 2021/01/23 13:01:10 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef NET_MPSAFE #define WQ_FLAGS WQ_MPSAFE #define CALLOUT_FLAGS CALLOUT_MPSAFE #else #define WQ_FLAGS 0 #define CALLOUT_FLAGS 0 #endif /********************************************************* * Function prototypes *********************************************************/ static int ena_probe(device_t, cfdata_t, void *); static int ena_intr_msix_mgmnt(void *); static int ena_allocate_pci_resources(struct pci_attach_args *, struct ena_adapter *); static void ena_free_pci_resources(struct ena_adapter *); static int ena_change_mtu(struct ifnet *, int); static void ena_init_io_rings_common(struct ena_adapter *, struct ena_ring *, uint16_t); static void ena_init_io_rings(struct ena_adapter *); static void ena_free_io_ring_resources(struct ena_adapter *, unsigned int); static void ena_free_all_io_rings_resources(struct ena_adapter *); #if 0 static int ena_setup_tx_dma_tag(struct ena_adapter *); static int ena_free_tx_dma_tag(struct ena_adapter *); static int ena_setup_rx_dma_tag(struct ena_adapter *); static int ena_free_rx_dma_tag(struct ena_adapter *); #endif static int ena_setup_tx_resources(struct ena_adapter *, int); static void ena_free_tx_resources(struct ena_adapter *, int); static int ena_setup_all_tx_resources(struct ena_adapter *); static void ena_free_all_tx_resources(struct ena_adapter *); static inline int validate_rx_req_id(struct ena_ring *, uint16_t); static int ena_setup_rx_resources(struct ena_adapter *, unsigned int); static void ena_free_rx_resources(struct ena_adapter *, unsigned int); static int ena_setup_all_rx_resources(struct ena_adapter *); static void ena_free_all_rx_resources(struct ena_adapter *); static inline int ena_alloc_rx_mbuf(struct ena_adapter *, struct ena_ring *, struct ena_rx_buffer *); static void ena_free_rx_mbuf(struct ena_adapter *, struct ena_ring *, struct ena_rx_buffer *); static int ena_refill_rx_bufs(struct ena_ring *, uint32_t); static void ena_free_rx_bufs(struct ena_adapter *, unsigned int); static void ena_refill_all_rx_bufs(struct ena_adapter *); static void ena_free_all_rx_bufs(struct ena_adapter *); static void ena_free_tx_bufs(struct ena_adapter *, unsigned int); static void ena_free_all_tx_bufs(struct ena_adapter *); static void ena_destroy_all_tx_queues(struct ena_adapter *); static void ena_destroy_all_rx_queues(struct ena_adapter *); static void ena_destroy_all_io_queues(struct ena_adapter *); static int ena_create_io_queues(struct ena_adapter *); static int ena_tx_cleanup(struct ena_ring *); static void ena_deferred_rx_cleanup(struct work *, void *); static int ena_rx_cleanup(struct ena_ring *); static inline int validate_tx_req_id(struct ena_ring *, uint16_t); #if 0 static void ena_rx_hash_mbuf(struct ena_ring *, struct ena_com_rx_ctx *, struct mbuf *); #endif static struct mbuf* ena_rx_mbuf(struct ena_ring *, struct ena_com_rx_buf_info *, struct ena_com_rx_ctx *, uint16_t *); static inline void ena_rx_checksum(struct ena_ring *, struct ena_com_rx_ctx *, struct mbuf *); static int ena_handle_msix(void *); static int ena_enable_msix(struct ena_adapter *); static int ena_request_mgmnt_irq(struct ena_adapter *); static int ena_request_io_irq(struct ena_adapter *); static void ena_free_mgmnt_irq(struct ena_adapter *); static void ena_free_io_irq(struct ena_adapter *); static void ena_free_irqs(struct ena_adapter*); static void ena_disable_msix(struct ena_adapter *); static void ena_unmask_all_io_irqs(struct ena_adapter *); static int ena_rss_configure(struct ena_adapter *); static int ena_up_complete(struct ena_adapter *); static int ena_up(struct ena_adapter *); static void ena_down(struct ena_adapter *); #if 0 static uint64_t ena_get_counter(struct ifnet *, ift_counter); #endif static int ena_media_change(struct ifnet *); static void ena_media_status(struct ifnet *, struct ifmediareq *); static int ena_init(struct ifnet *); static int ena_ioctl(struct ifnet *, u_long, void *); static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *); static void ena_update_host_info(struct ena_admin_host_info *, struct ifnet *); static void ena_update_hwassist(struct ena_adapter *); static int ena_setup_ifnet(device_t, struct ena_adapter *, struct ena_com_dev_get_features_ctx *); static void ena_tx_csum(struct ena_com_tx_ctx *, struct mbuf *); static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf); static int ena_xmit_mbuf(struct ena_ring *, struct mbuf **); static void ena_start_xmit(struct ena_ring *); static int ena_mq_start(struct ifnet *, struct mbuf *); static void ena_deferred_mq_start(struct work *, void *); #if 0 static void ena_qflush(struct ifnet *); #endif static int ena_calc_io_queue_num(struct pci_attach_args *, struct ena_adapter *, struct ena_com_dev_get_features_ctx *); static int ena_calc_queue_size(struct ena_adapter *, uint16_t *, uint16_t *, struct ena_com_dev_get_features_ctx *); #if 0 static int ena_rss_init_default(struct ena_adapter *); static void ena_rss_init_default_deferred(void *); #endif static void ena_config_host_info(struct ena_com_dev *); static void ena_attach(device_t, device_t, void *); static int ena_detach(device_t, int); static int ena_device_init(struct ena_adapter *, device_t, struct ena_com_dev_get_features_ctx *, int *); static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *, int); static void ena_update_on_link_change(void *, struct ena_admin_aenq_entry *); static void unimplemented_aenq_handler(void *, struct ena_admin_aenq_entry *); static void ena_timer_service(void *); static const char ena_version[] = DEVICE_NAME DRV_MODULE_NAME " v" DRV_MODULE_VERSION; #if 0 static SYSCTL_NODE(_hw, OID_AUTO, ena, CTLFLAG_RD, 0, "ENA driver parameters"); #endif /* * Tuneable number of buffers in the buf-ring (drbr) */ static int ena_buf_ring_size = 4096; #if 0 SYSCTL_INT(_hw_ena, OID_AUTO, buf_ring_size, CTLFLAG_RWTUN, &ena_buf_ring_size, 0, "Size of the bufring"); #endif /* * Logging level for changing verbosity of the output */ int ena_log_level = ENA_ALERT | ENA_WARNING; #if 0 SYSCTL_INT(_hw_ena, OID_AUTO, log_level, CTLFLAG_RWTUN, &ena_log_level, 0, "Logging level indicating verbosity of the logs"); #endif static const ena_vendor_info_t ena_vendor_info_array[] = { { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_PF, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_PF, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_VF, 0}, { PCI_VENDOR_ID_AMAZON, PCI_DEV_ID_ENA_LLQ_VF, 0}, /* Last entry */ { 0, 0, 0 } }; /* * Contains pointers to event handlers, e.g. link state chage. */ static struct ena_aenq_handlers aenq_handlers; int ena_dma_alloc(device_t dmadev, bus_size_t size, ena_mem_handle_t *dma , int mapflags) { struct ena_adapter *adapter = device_private(dmadev); uint32_t maxsize; bus_dma_segment_t seg; int error, nsegs; maxsize = ((size - 1) / PAGE_SIZE + 1) * PAGE_SIZE; #if 0 /* XXX what is this needed for ? */ dma_space_addr = ENA_DMA_BIT_MASK(adapter->dma_width); if (unlikely(dma_space_addr == 0)) dma_space_addr = BUS_SPACE_MAXADDR; #endif dma->tag = adapter->sc_dmat; if ((error = bus_dmamap_create(dma->tag, maxsize, 1, maxsize, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dma->map)) != 0) { ena_trace(ENA_ALERT, "bus_dmamap_create(%ju) failed: %d\n", (uintmax_t)maxsize, error); goto fail_create; } error = bus_dmamem_alloc(dma->tag, maxsize, 8, 0, &seg, 1, &nsegs, BUS_DMA_ALLOCNOW); if (error) { ena_trace(ENA_ALERT, "bus_dmamem_alloc(%ju) failed: %d\n", (uintmax_t)maxsize, error); goto fail_alloc; } error = bus_dmamem_map(dma->tag, &seg, nsegs, maxsize, &dma->vaddr, BUS_DMA_COHERENT); if (error) { ena_trace(ENA_ALERT, "bus_dmamem_map(%ju) failed: %d\n", (uintmax_t)maxsize, error); goto fail_map; } memset(dma->vaddr, 0, maxsize); error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr, maxsize, NULL, mapflags); if (error) { ena_trace(ENA_ALERT, ": bus_dmamap_load failed: %d\n", error); goto fail_load; } dma->paddr = dma->map->dm_segs[0].ds_addr; return (0); fail_load: bus_dmamem_unmap(dma->tag, dma->vaddr, maxsize); fail_map: bus_dmamem_free(dma->tag, &seg, nsegs); fail_alloc: bus_dmamap_destroy(adapter->sc_dmat, dma->map); fail_create: return (error); } static int ena_allocate_pci_resources(struct pci_attach_args *pa, struct ena_adapter *adapter) { pcireg_t memtype, reg; bus_addr_t memaddr; bus_size_t mapsize; int flags, error; int msixoff; memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ENA_REG_BAR); if (PCI_MAPREG_TYPE(memtype) != PCI_MAPREG_TYPE_MEM) { aprint_error_dev(adapter->pdev, "invalid type (type=0x%x)\n", memtype); return ENXIO; } reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (((reg & PCI_COMMAND_MASTER_ENABLE) == 0) || ((reg & PCI_COMMAND_MEM_ENABLE) == 0)) { /* * Enable address decoding for memory range in case BIOS or * UEFI didn't set it. */ reg |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg); } adapter->sc_btag = pa->pa_memt; error = pci_mapreg_info(pa->pa_pc, pa->pa_tag, ENA_REG_BAR, memtype, &memaddr, &mapsize, &flags); if (error) { aprint_error_dev(adapter->pdev, "can't get map info\n"); return ENXIO; } if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &msixoff, NULL)) { pcireg_t msixtbl; uint32_t table_offset; int bir; msixtbl = pci_conf_read(pa->pa_pc, pa->pa_tag, msixoff + PCI_MSIX_TBLOFFSET); table_offset = msixtbl & PCI_MSIX_TBLOFFSET_MASK; bir = msixtbl & PCI_MSIX_PBABIR_MASK; if (bir == PCI_MAPREG_NUM(ENA_REG_BAR)) mapsize = table_offset; } error = bus_space_map(adapter->sc_btag, memaddr, mapsize, flags, &adapter->sc_bhandle); if (error != 0) { aprint_error_dev(adapter->pdev, "can't map mem space (error=%d)\n", error); return ENXIO; } return (0); } static void ena_free_pci_resources(struct ena_adapter *adapter) { /* Nothing to do */ } static int ena_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; const ena_vendor_info_t *ent; for (int i = 0; i < __arraycount(ena_vendor_info_array); i++) { ent = &ena_vendor_info_array[i]; if ((PCI_VENDOR(pa->pa_id) == ent->vendor_id) && (PCI_PRODUCT(pa->pa_id) == ent->device_id)) { return 1; } } return 0; } static int ena_change_mtu(struct ifnet *ifp, int new_mtu) { struct ena_adapter *adapter = if_getsoftc(ifp); int rc; if ((new_mtu > adapter->max_mtu) || (new_mtu < ENA_MIN_MTU)) { device_printf(adapter->pdev, "Invalid MTU setting. " "new_mtu: %d max mtu: %d min mtu: %d\n", new_mtu, adapter->max_mtu, ENA_MIN_MTU); return (EINVAL); } rc = ena_com_set_dev_mtu(adapter->ena_dev, new_mtu); if (likely(rc == 0)) { ena_trace(ENA_DBG, "set MTU to %d\n", new_mtu); if_setmtu(ifp, new_mtu); } else { device_printf(adapter->pdev, "Failed to set MTU to %d\n", new_mtu); } return (rc); } #define EVCNT_INIT(st, f) \ do { \ evcnt_attach_dynamic(&st->f, EVCNT_TYPE_MISC, NULL, \ st->name, #f); \ } while (0) static inline void ena_alloc_counters_rx(struct ena_stats_rx *st, int queue) { snprintf(st->name, sizeof(st->name), "ena rxq%d", queue); EVCNT_INIT(st, cnt); EVCNT_INIT(st, bytes); EVCNT_INIT(st, refil_partial); EVCNT_INIT(st, bad_csum); EVCNT_INIT(st, mjum_alloc_fail); EVCNT_INIT(st, mbuf_alloc_fail); EVCNT_INIT(st, dma_mapping_err); EVCNT_INIT(st, bad_desc_num); EVCNT_INIT(st, bad_req_id); EVCNT_INIT(st, empty_rx_ring); /* Make sure all code is updated when new fields added */ CTASSERT(offsetof(struct ena_stats_rx, empty_rx_ring) + sizeof(st->empty_rx_ring) == sizeof(*st)); } static inline void ena_alloc_counters_tx(struct ena_stats_tx *st, int queue) { snprintf(st->name, sizeof(st->name), "ena txq%d", queue); EVCNT_INIT(st, cnt); EVCNT_INIT(st, bytes); EVCNT_INIT(st, prepare_ctx_err); EVCNT_INIT(st, dma_mapping_err); EVCNT_INIT(st, doorbells); EVCNT_INIT(st, missing_tx_comp); EVCNT_INIT(st, bad_req_id); EVCNT_INIT(st, collapse); EVCNT_INIT(st, collapse_err); /* Make sure all code is updated when new fields added */ CTASSERT(offsetof(struct ena_stats_tx, collapse_err) + sizeof(st->collapse_err) == sizeof(*st)); } static inline void ena_alloc_counters_dev(struct ena_stats_dev *st, int queue) { snprintf(st->name, sizeof(st->name), "ena dev ioq%d", queue); EVCNT_INIT(st, wd_expired); EVCNT_INIT(st, interface_up); EVCNT_INIT(st, interface_down); EVCNT_INIT(st, admin_q_pause); /* Make sure all code is updated when new fields added */ CTASSERT(offsetof(struct ena_stats_dev, admin_q_pause) + sizeof(st->admin_q_pause) == sizeof(*st)); } static inline void ena_alloc_counters_hwstats(struct ena_hw_stats *st, int queue) { snprintf(st->name, sizeof(st->name), "ena hw ioq%d", queue); EVCNT_INIT(st, rx_packets); EVCNT_INIT(st, tx_packets); EVCNT_INIT(st, rx_bytes); EVCNT_INIT(st, tx_bytes); EVCNT_INIT(st, rx_drops); /* Make sure all code is updated when new fields added */ CTASSERT(offsetof(struct ena_hw_stats, rx_drops) + sizeof(st->rx_drops) == sizeof(*st)); } static inline void ena_free_counters(struct evcnt *begin, int size, int offset) { struct evcnt *end = (struct evcnt *)((char *)begin + size); begin = (struct evcnt *)((char *)begin + offset); for (; begin < end; ++begin) counter_u64_free(*begin); } static inline void ena_reset_counters(struct evcnt *begin, int size, int offset) { struct evcnt *end = (struct evcnt *)((char *)begin + size); begin = (struct evcnt *)((char *)begin + offset); for (; begin < end; ++begin) counter_u64_zero(*begin); } static void ena_init_io_rings_common(struct ena_adapter *adapter, struct ena_ring *ring, uint16_t qid) { ring->qid = qid; ring->adapter = adapter; ring->ena_dev = adapter->ena_dev; } static void ena_init_io_rings(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev; struct ena_ring *txr, *rxr; struct ena_que *que; int i; ena_dev = adapter->ena_dev; for (i = 0; i < adapter->num_queues; i++) { txr = &adapter->tx_ring[i]; rxr = &adapter->rx_ring[i]; /* TX/RX common ring state */ ena_init_io_rings_common(adapter, txr, i); ena_init_io_rings_common(adapter, rxr, i); /* TX specific ring state */ txr->ring_size = adapter->tx_ring_size; txr->tx_max_header_size = ena_dev->tx_max_header_size; txr->tx_mem_queue_type = ena_dev->tx_mem_queue_type; txr->smoothed_interval = ena_com_get_nonadaptive_moderation_interval_tx(ena_dev); /* Allocate a buf ring */ txr->br = buf_ring_alloc(ena_buf_ring_size, M_DEVBUF, M_WAITOK, &txr->ring_mtx); /* Alloc TX statistics. */ ena_alloc_counters_tx(&txr->tx_stats, i); /* RX specific ring state */ rxr->ring_size = adapter->rx_ring_size; rxr->smoothed_interval = ena_com_get_nonadaptive_moderation_interval_rx(ena_dev); /* Alloc RX statistics. */ ena_alloc_counters_rx(&rxr->rx_stats, i); /* Initialize locks */ snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)", device_xname(adapter->pdev), i); snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)", device_xname(adapter->pdev), i); mutex_init(&txr->ring_mtx, MUTEX_DEFAULT, IPL_NET); mutex_init(&rxr->ring_mtx, MUTEX_DEFAULT, IPL_NET); que = &adapter->que[i]; que->adapter = adapter; que->id = i; que->tx_ring = txr; que->rx_ring = rxr; txr->que = que; rxr->que = que; rxr->empty_rx_queue = 0; } } static void ena_free_io_ring_resources(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *txr = &adapter->tx_ring[qid]; struct ena_ring *rxr = &adapter->rx_ring[qid]; ena_free_counters((struct evcnt *)&txr->tx_stats, sizeof(txr->tx_stats), offsetof(struct ena_stats_tx, cnt)); ena_free_counters((struct evcnt *)&rxr->rx_stats, sizeof(rxr->rx_stats), offsetof(struct ena_stats_rx, cnt)); ENA_RING_MTX_LOCK(txr); drbr_free(txr->br, M_DEVBUF); ENA_RING_MTX_UNLOCK(txr); mutex_destroy(&txr->ring_mtx); mutex_destroy(&rxr->ring_mtx); } static void ena_free_all_io_rings_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_queues; i++) ena_free_io_ring_resources(adapter, i); } #if 0 static int ena_setup_tx_dma_tag(struct ena_adapter *adapter) { int ret; /* Create DMA tag for Tx buffers */ ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), 1, 0, /* alignment, bounds */ ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ BUS_SPACE_MAXADDR, /* highaddr of excl window */ NULL, NULL, /* filter, filterarg */ ENA_TSO_MAXSIZE, /* maxsize */ adapter->max_tx_sgl_size - 1, /* nsegments */ ENA_TSO_MAXSIZE, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockfuncarg */ &adapter->tx_buf_tag); return (ret); } #endif #if 0 static int ena_setup_rx_dma_tag(struct ena_adapter *adapter) { int ret; /* Create DMA tag for Rx buffers*/ ret = bus_dma_tag_create(bus_get_dma_tag(adapter->pdev), /* parent */ 1, 0, /* alignment, bounds */ ENA_DMA_BIT_MASK(adapter->dma_width), /* lowaddr of excl window */ BUS_SPACE_MAXADDR, /* highaddr of excl window */ NULL, NULL, /* filter, filterarg */ MJUM16BYTES, /* maxsize */ adapter->max_rx_sgl_size, /* nsegments */ MJUM16BYTES, /* maxsegsize */ 0, /* flags */ NULL, /* lockfunc */ NULL, /* lockarg */ &adapter->rx_buf_tag); return (ret); } #endif /** * ena_setup_tx_resources - allocate Tx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_tx_resources(struct ena_adapter *adapter, int qid) { struct ena_que *que = &adapter->que[qid]; struct ena_ring *tx_ring = que->tx_ring; int size, i, err; #ifdef RSS cpuset_t cpu_mask; #endif size = sizeof(struct ena_tx_buffer) * tx_ring->ring_size; tx_ring->tx_buffer_info = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (unlikely(tx_ring->tx_buffer_info == NULL)) return (ENOMEM); size = sizeof(uint16_t) * tx_ring->ring_size; tx_ring->free_tx_ids = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (unlikely(tx_ring->free_tx_ids == NULL)) goto err_buf_info_free; /* Req id stack for TX OOO completions */ for (i = 0; i < tx_ring->ring_size; i++) tx_ring->free_tx_ids[i] = i; /* Reset TX statistics. */ ena_reset_counters((struct evcnt *)&tx_ring->tx_stats, sizeof(tx_ring->tx_stats), offsetof(struct ena_stats_tx, cnt)); tx_ring->next_to_use = 0; tx_ring->next_to_clean = 0; /* Make sure that drbr is empty */ ENA_RING_MTX_LOCK(tx_ring); drbr_flush(adapter->ifp, tx_ring->br); ENA_RING_MTX_UNLOCK(tx_ring); /* ... and create the buffer DMA maps */ for (i = 0; i < tx_ring->ring_size; i++) { err = bus_dmamap_create(adapter->sc_dmat, ENA_TSO_MAXSIZE, adapter->max_tx_sgl_size - 1, ENA_TSO_MAXSIZE, 0, 0, &tx_ring->tx_buffer_info[i].map); if (unlikely(err != 0)) { ena_trace(ENA_ALERT, "Unable to create Tx DMA map for buffer %d\n", i); goto err_buf_info_unmap; } } /* Allocate workqueues */ int rc = workqueue_create(&tx_ring->enqueue_tq, "ena_tx_enq", ena_deferred_mq_start, tx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "Unable to create workqueue for enqueue task\n"); i = tx_ring->ring_size; goto err_buf_info_unmap; } #if 0 /* RSS set cpu for thread */ #ifdef RSS CPU_SETOF(que->cpu, &cpu_mask); taskqueue_start_threads_cpuset(&tx_ring->enqueue_tq, 1, IPL_NET, &cpu_mask, "%s tx_ring enq (bucket %d)", device_xname(adapter->pdev), que->cpu); #else /* RSS */ taskqueue_start_threads(&tx_ring->enqueue_tq, 1, IPL_NET, "%s txeq %d", device_xname(adapter->pdev), que->cpu); #endif /* RSS */ #endif return (0); err_buf_info_unmap: while (i--) { bus_dmamap_destroy(adapter->sc_dmat, tx_ring->tx_buffer_info[i].map); } free(tx_ring->free_tx_ids, M_DEVBUF); tx_ring->free_tx_ids = NULL; err_buf_info_free: free(tx_ring->tx_buffer_info, M_DEVBUF); tx_ring->tx_buffer_info = NULL; return (ENOMEM); } /** * ena_free_tx_resources - Free Tx Resources per Queue * @adapter: network interface device structure * @qid: queue index * * Free all transmit software resources **/ static void ena_free_tx_resources(struct ena_adapter *adapter, int qid) { struct ena_ring *tx_ring = &adapter->tx_ring[qid]; workqueue_wait(tx_ring->enqueue_tq, &tx_ring->enqueue_task); workqueue_destroy(tx_ring->enqueue_tq); tx_ring->enqueue_tq = NULL; ENA_RING_MTX_LOCK(tx_ring); /* Flush buffer ring, */ drbr_flush(adapter->ifp, tx_ring->br); /* Free buffer DMA maps, */ for (int i = 0; i < tx_ring->ring_size; i++) { m_freem(tx_ring->tx_buffer_info[i].mbuf); tx_ring->tx_buffer_info[i].mbuf = NULL; bus_dmamap_unload(adapter->sc_dmat, tx_ring->tx_buffer_info[i].map); bus_dmamap_destroy(adapter->sc_dmat, tx_ring->tx_buffer_info[i].map); } ENA_RING_MTX_UNLOCK(tx_ring); /* And free allocated memory. */ free(tx_ring->tx_buffer_info, M_DEVBUF); tx_ring->tx_buffer_info = NULL; free(tx_ring->free_tx_ids, M_DEVBUF); tx_ring->free_tx_ids = NULL; } /** * ena_setup_all_tx_resources - allocate all queues Tx resources * @adapter: network interface device structure * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_all_tx_resources(struct ena_adapter *adapter) { int i, rc; for (i = 0; i < adapter->num_queues; i++) { rc = ena_setup_tx_resources(adapter, i); if (rc != 0) { device_printf(adapter->pdev, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } } return (0); err_setup_tx: /* Rewind the index freeing the rings as we go */ while (i--) ena_free_tx_resources(adapter, i); return (rc); } /** * ena_free_all_tx_resources - Free Tx Resources for All Queues * @adapter: network interface device structure * * Free all transmit software resources **/ static void ena_free_all_tx_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_queues; i++) ena_free_tx_resources(adapter, i); } static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id) { if (likely(req_id < rx_ring->ring_size)) return (0); device_printf(rx_ring->adapter->pdev, "Invalid rx req_id: %hu\n", req_id); counter_u64_add(rx_ring->rx_stats.bad_req_id, 1); /* Trigger device reset */ rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID; rx_ring->adapter->trigger_reset = true; return (EFAULT); } /** * ena_setup_rx_resources - allocate Rx resources (Descriptors) * @adapter: network interface device structure * @qid: queue index * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_rx_resources(struct ena_adapter *adapter, unsigned int qid) { struct ena_que *que = &adapter->que[qid]; struct ena_ring *rx_ring = que->rx_ring; int size, err, i; #ifdef RSS cpuset_t cpu_mask; #endif size = sizeof(struct ena_rx_buffer) * rx_ring->ring_size; /* * Alloc extra element so in rx path * we can always prefetch rx_info + 1 */ size += sizeof(struct ena_rx_buffer); rx_ring->rx_buffer_info = malloc(size, M_DEVBUF, M_WAITOK | M_ZERO); size = sizeof(uint16_t) * rx_ring->ring_size; rx_ring->free_rx_ids = malloc(size, M_DEVBUF, M_WAITOK); for (i = 0; i < rx_ring->ring_size; i++) rx_ring->free_rx_ids[i] = i; /* Reset RX statistics. */ ena_reset_counters((struct evcnt *)&rx_ring->rx_stats, sizeof(rx_ring->rx_stats), offsetof(struct ena_stats_rx, cnt)); rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; /* ... and create the buffer DMA maps */ for (i = 0; i < rx_ring->ring_size; i++) { err = bus_dmamap_create(adapter->sc_dmat, MJUM16BYTES, adapter->max_rx_sgl_size, MJUM16BYTES, 0, 0, &(rx_ring->rx_buffer_info[i].map)); if (err != 0) { ena_trace(ENA_ALERT, "Unable to create Rx DMA map for buffer %d\n", i); goto err_buf_info_unmap; } } #ifdef LRO /* Create LRO for the ring */ if ((adapter->ifp->if_capenable & IFCAP_LRO) != 0) { int err = tcp_lro_init(&rx_ring->lro); if (err != 0) { device_printf(adapter->pdev, "LRO[%d] Initialization failed!\n", qid); } else { ena_trace(ENA_INFO, "RX Soft LRO[%d] Initialized\n", qid); rx_ring->lro.ifp = adapter->ifp; } } #endif /* Allocate workqueues */ int rc = workqueue_create(&rx_ring->cmpl_tq, "ena_rx_comp", ena_deferred_rx_cleanup, rx_ring, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "Unable to create workqueue for RX completion task\n"); goto err_buf_info_unmap; } #if 0 /* RSS set cpu for thread */ #ifdef RSS CPU_SETOF(que->cpu, &cpu_mask); taskqueue_start_threads_cpuset(&rx_ring->cmpl_tq, 1, IPL_NET, &cpu_mask, "%s rx_ring cmpl (bucket %d)", device_xname(adapter->pdev), que->cpu); #else taskqueue_start_threads(&rx_ring->cmpl_tq, 1, IPL_NET, "%s rx_ring cmpl %d", device_xname(adapter->pdev), que->cpu); #endif #endif return (0); err_buf_info_unmap: while (i--) { bus_dmamap_destroy(adapter->sc_dmat, rx_ring->rx_buffer_info[i].map); } free(rx_ring->free_rx_ids, M_DEVBUF); rx_ring->free_rx_ids = NULL; free(rx_ring->rx_buffer_info, M_DEVBUF); rx_ring->rx_buffer_info = NULL; return (ENOMEM); } /** * ena_free_rx_resources - Free Rx Resources * @adapter: network interface device structure * @qid: queue index * * Free all receive software resources **/ static void ena_free_rx_resources(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; workqueue_wait(rx_ring->cmpl_tq, &rx_ring->cmpl_task); workqueue_destroy(rx_ring->cmpl_tq); rx_ring->cmpl_tq = NULL; /* Free buffer DMA maps, */ for (int i = 0; i < rx_ring->ring_size; i++) { m_freem(rx_ring->rx_buffer_info[i].mbuf); rx_ring->rx_buffer_info[i].mbuf = NULL; bus_dmamap_unload(adapter->sc_dmat, rx_ring->rx_buffer_info[i].map); bus_dmamap_destroy(adapter->sc_dmat, rx_ring->rx_buffer_info[i].map); } #ifdef LRO /* free LRO resources, */ tcp_lro_free(&rx_ring->lro); #endif /* free allocated memory */ free(rx_ring->rx_buffer_info, M_DEVBUF); rx_ring->rx_buffer_info = NULL; free(rx_ring->free_rx_ids, M_DEVBUF); rx_ring->free_rx_ids = NULL; } /** * ena_setup_all_rx_resources - allocate all queues Rx resources * @adapter: network interface device structure * * Returns 0 on success, otherwise on failure. **/ static int ena_setup_all_rx_resources(struct ena_adapter *adapter) { int i, rc = 0; for (i = 0; i < adapter->num_queues; i++) { rc = ena_setup_rx_resources(adapter, i); if (rc != 0) { device_printf(adapter->pdev, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } } return (0); err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) ena_free_rx_resources(adapter, i); return (rc); } /** * ena_free_all_rx_resources - Free Rx resources for all queues * @adapter: network interface device structure * * Free all receive software resources **/ static void ena_free_all_rx_resources(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_queues; i++) ena_free_rx_resources(adapter, i); } static inline int ena_alloc_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) { struct ena_com_buf *ena_buf; int error; int mlen; /* if previous allocated frag is not used */ if (unlikely(rx_info->mbuf != NULL)) return (0); /* Get mbuf using UMA allocator */ rx_info->mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM16BYTES); if (unlikely(rx_info->mbuf == NULL)) { counter_u64_add(rx_ring->rx_stats.mjum_alloc_fail, 1); rx_info->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); if (unlikely(rx_info->mbuf == NULL)) { counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); return (ENOMEM); } mlen = MCLBYTES; } else { mlen = MJUM16BYTES; } /* Set mbuf length*/ rx_info->mbuf->m_pkthdr.len = rx_info->mbuf->m_len = mlen; /* Map packets for DMA */ ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH, "Using tag %p for buffers' DMA mapping, mbuf %p len: %d", adapter->sc_dmat,rx_info->mbuf, rx_info->mbuf->m_len); error = bus_dmamap_load_mbuf(adapter->sc_dmat, rx_info->map, rx_info->mbuf, BUS_DMA_NOWAIT); if (unlikely((error != 0) || (rx_info->map->dm_nsegs != 1))) { ena_trace(ENA_WARNING, "failed to map mbuf, error: %d, " "nsegs: %d\n", error, rx_info->map->dm_nsegs); counter_u64_add(rx_ring->rx_stats.dma_mapping_err, 1); goto exit; } bus_dmamap_sync(adapter->sc_dmat, rx_info->map, 0, rx_info->map->dm_mapsize, BUS_DMASYNC_PREREAD); ena_buf = &rx_info->ena_buf; ena_buf->paddr = rx_info->map->dm_segs[0].ds_addr; ena_buf->len = mlen; ena_trace(ENA_DBG | ENA_RSC | ENA_RXPTH, "ALLOC RX BUF: mbuf %p, rx_info %p, len %d, paddr %#jx\n", rx_info->mbuf, rx_info,ena_buf->len, (uintmax_t)ena_buf->paddr); return (0); exit: m_freem(rx_info->mbuf); rx_info->mbuf = NULL; return (EFAULT); } static void ena_free_rx_mbuf(struct ena_adapter *adapter, struct ena_ring *rx_ring, struct ena_rx_buffer *rx_info) { if (rx_info->mbuf == NULL) { ena_trace(ENA_WARNING, "Trying to free unallocated buffer\n"); return; } bus_dmamap_unload(adapter->sc_dmat, rx_info->map); m_freem(rx_info->mbuf); rx_info->mbuf = NULL; } /** * ena_refill_rx_bufs - Refills ring with descriptors * @rx_ring: the ring which we want to feed with free descriptors * @num: number of descriptors to refill * Refills the ring with newly allocated DMA-mapped mbufs for receiving **/ static int ena_refill_rx_bufs(struct ena_ring *rx_ring, uint32_t num) { struct ena_adapter *adapter = rx_ring->adapter; uint16_t next_to_use, req_id; uint32_t i; int rc; ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "refill qid: %d", rx_ring->qid); next_to_use = rx_ring->next_to_use; for (i = 0; i < num; i++) { struct ena_rx_buffer *rx_info; ena_trace(ENA_DBG | ENA_RXPTH | ENA_RSC, "RX buffer - next to use: %d", next_to_use); req_id = rx_ring->free_rx_ids[next_to_use]; rc = validate_rx_req_id(rx_ring, req_id); if (unlikely(rc != 0)) break; rx_info = &rx_ring->rx_buffer_info[req_id]; rc = ena_alloc_rx_mbuf(adapter, rx_ring, rx_info); if (unlikely(rc != 0)) { ena_trace(ENA_WARNING, "failed to alloc buffer for rx queue %d\n", rx_ring->qid); break; } rc = ena_com_add_single_rx_desc(rx_ring->ena_com_io_sq, &rx_info->ena_buf, req_id); if (unlikely(rc != 0)) { ena_trace(ENA_WARNING, "failed to add buffer for rx queue %d\n", rx_ring->qid); break; } next_to_use = ENA_RX_RING_IDX_NEXT(next_to_use, rx_ring->ring_size); } if (unlikely(i < num)) { counter_u64_add(rx_ring->rx_stats.refil_partial, 1); ena_trace(ENA_WARNING, "refilled rx qid %d with only %d mbufs (from %d)\n", rx_ring->qid, i, num); } if (likely(i != 0)) { wmb(); ena_com_write_sq_doorbell(rx_ring->ena_com_io_sq); } rx_ring->next_to_use = next_to_use; return (i); } static void ena_free_rx_bufs(struct ena_adapter *adapter, unsigned int qid) { struct ena_ring *rx_ring = &adapter->rx_ring[qid]; unsigned int i; for (i = 0; i < rx_ring->ring_size; i++) { struct ena_rx_buffer *rx_info = &rx_ring->rx_buffer_info[i]; if (rx_info->mbuf != NULL) ena_free_rx_mbuf(adapter, rx_ring, rx_info); } } /** * ena_refill_all_rx_bufs - allocate all queues Rx buffers * @adapter: network interface device structure * */ static void ena_refill_all_rx_bufs(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, rc, bufs_num; for (i = 0; i < adapter->num_queues; i++) { rx_ring = &adapter->rx_ring[i]; bufs_num = rx_ring->ring_size - 1; rc = ena_refill_rx_bufs(rx_ring, bufs_num); if (unlikely(rc != bufs_num)) ena_trace(ENA_WARNING, "refilling Queue %d failed. " "Allocated %d buffers from: %d\n", i, rc, bufs_num); } } static void ena_free_all_rx_bufs(struct ena_adapter *adapter) { int i; for (i = 0; i < adapter->num_queues; i++) ena_free_rx_bufs(adapter, i); } /** * ena_free_tx_bufs - Free Tx Buffers per Queue * @adapter: network interface device structure * @qid: queue index **/ static void ena_free_tx_bufs(struct ena_adapter *adapter, unsigned int qid) { bool print_once = true; struct ena_ring *tx_ring = &adapter->tx_ring[qid]; ENA_RING_MTX_LOCK(tx_ring); for (int i = 0; i < tx_ring->ring_size; i++) { struct ena_tx_buffer *tx_info = &tx_ring->tx_buffer_info[i]; if (tx_info->mbuf == NULL) continue; if (print_once) { device_printf(adapter->pdev, "free uncompleted tx mbuf qid %d idx 0x%x", qid, i); print_once = false; } else { ena_trace(ENA_DBG, "free uncompleted tx mbuf qid %d idx 0x%x", qid, i); } bus_dmamap_unload(adapter->sc_dmat, tx_info->map); m_free(tx_info->mbuf); tx_info->mbuf = NULL; } ENA_RING_MTX_UNLOCK(tx_ring); } static void ena_free_all_tx_bufs(struct ena_adapter *adapter) { for (int i = 0; i < adapter->num_queues; i++) ena_free_tx_bufs(adapter, i); } static void ena_destroy_all_tx_queues(struct ena_adapter *adapter) { uint16_t ena_qid; int i; for (i = 0; i < adapter->num_queues; i++) { ena_qid = ENA_IO_TXQ_IDX(i); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_rx_queues(struct ena_adapter *adapter) { uint16_t ena_qid; int i; for (i = 0; i < adapter->num_queues; i++) { ena_qid = ENA_IO_RXQ_IDX(i); ena_com_destroy_io_queue(adapter->ena_dev, ena_qid); } } static void ena_destroy_all_io_queues(struct ena_adapter *adapter) { ena_destroy_all_tx_queues(adapter); ena_destroy_all_rx_queues(adapter); } static inline int validate_tx_req_id(struct ena_ring *tx_ring, uint16_t req_id) { struct ena_adapter *adapter = tx_ring->adapter; struct ena_tx_buffer *tx_info = NULL; if (likely(req_id < tx_ring->ring_size)) { tx_info = &tx_ring->tx_buffer_info[req_id]; if (tx_info->mbuf != NULL) return (0); } if (tx_info->mbuf == NULL) device_printf(adapter->pdev, "tx_info doesn't have valid mbuf\n"); else device_printf(adapter->pdev, "Invalid req_id: %hu\n", req_id); counter_u64_add(tx_ring->tx_stats.bad_req_id, 1); return (EFAULT); } static int ena_create_io_queues(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; struct ena_com_create_io_ctx ctx; struct ena_ring *ring; uint16_t ena_qid; uint32_t msix_vector; int rc, i; /* Create TX queues */ for (i = 0; i < adapter->num_queues; i++) { msix_vector = ENA_IO_IRQ_IDX(i); ena_qid = ENA_IO_TXQ_IDX(i); ctx.mem_queue_type = ena_dev->tx_mem_queue_type; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX; ctx.queue_size = adapter->tx_ring_size; ctx.msix_vector = msix_vector; ctx.qid = ena_qid; rc = ena_com_create_io_queue(ena_dev, &ctx); if (rc != 0) { device_printf(adapter->pdev, "Failed to create io TX queue #%d rc: %d\n", i, rc); goto err_tx; } ring = &adapter->tx_ring[i]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &ring->ena_com_io_sq, &ring->ena_com_io_cq); if (rc != 0) { device_printf(adapter->pdev, "Failed to get TX queue handlers. TX queue num" " %d rc: %d\n", i, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); goto err_tx; } } /* Create RX queues */ for (i = 0; i < adapter->num_queues; i++) { msix_vector = ENA_IO_IRQ_IDX(i); ena_qid = ENA_IO_RXQ_IDX(i); ctx.mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX; ctx.queue_size = adapter->rx_ring_size; ctx.msix_vector = msix_vector; ctx.qid = ena_qid; rc = ena_com_create_io_queue(ena_dev, &ctx); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Failed to create io RX queue[%d] rc: %d\n", i, rc); goto err_rx; } ring = &adapter->rx_ring[i]; rc = ena_com_get_io_handlers(ena_dev, ena_qid, &ring->ena_com_io_sq, &ring->ena_com_io_cq); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Failed to get RX queue handlers. RX queue num" " %d rc: %d\n", i, rc); ena_com_destroy_io_queue(ena_dev, ena_qid); goto err_rx; } } return (0); err_rx: while (i--) ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(i)); i = adapter->num_queues; err_tx: while (i--) ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(i)); return (ENXIO); } /** * ena_tx_cleanup - clear sent packets and corresponding descriptors * @tx_ring: ring for which we want to clean packets * * Once packets are sent, we ask the device in a loop for no longer used * descriptors. We find the related mbuf chain in a map (index in an array) * and free it, then update ring state. * This is performed in "endless" loop, updating ring pointers every * TX_COMMIT. The first check of free descriptor is performed before the actual * loop, then repeated at the loop end. **/ static int ena_tx_cleanup(struct ena_ring *tx_ring) { struct ena_adapter *adapter; struct ena_com_io_cq* io_cq; uint16_t next_to_clean; uint16_t req_id; uint16_t ena_qid; unsigned int total_done = 0; int rc; int commit = TX_COMMIT; int budget = TX_BUDGET; int work_done; adapter = tx_ring->que->adapter; ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; next_to_clean = tx_ring->next_to_clean; do { struct ena_tx_buffer *tx_info; struct mbuf *mbuf; rc = ena_com_tx_comp_req_id_get(io_cq, &req_id); if (unlikely(rc != 0)) break; rc = validate_tx_req_id(tx_ring, req_id); if (unlikely(rc != 0)) break; tx_info = &tx_ring->tx_buffer_info[req_id]; mbuf = tx_info->mbuf; tx_info->mbuf = NULL; bintime_clear(&tx_info->timestamp); if (likely(tx_info->num_of_bufs != 0)) { /* Map is no longer required */ bus_dmamap_unload(adapter->sc_dmat, tx_info->map); } ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d mbuf %p completed", tx_ring->qid, mbuf); m_freem(mbuf); total_done += tx_info->tx_descs; tx_ring->free_tx_ids[next_to_clean] = req_id; next_to_clean = ENA_TX_RING_IDX_NEXT(next_to_clean, tx_ring->ring_size); if (unlikely(--commit == 0)) { commit = TX_COMMIT; /* update ring state every TX_COMMIT descriptor */ tx_ring->next_to_clean = next_to_clean; ena_com_comp_ack( &adapter->ena_dev->io_sq_queues[ena_qid], total_done); ena_com_update_dev_comp_head(io_cq); total_done = 0; } } while (likely(--budget)); work_done = TX_BUDGET - budget; ena_trace(ENA_DBG | ENA_TXPTH, "tx: q %d done. total pkts: %d", tx_ring->qid, work_done); /* If there is still something to commit update ring state */ if (likely(commit != TX_COMMIT)) { tx_ring->next_to_clean = next_to_clean; ena_com_comp_ack(&adapter->ena_dev->io_sq_queues[ena_qid], total_done); ena_com_update_dev_comp_head(io_cq); } if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0) workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, NULL); return (work_done); } #if 0 static void ena_rx_hash_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct mbuf *mbuf) { struct ena_adapter *adapter = rx_ring->adapter; if (likely(adapter->rss_support)) { mbuf->m_pkthdr.flowid = ena_rx_ctx->hash; if (ena_rx_ctx->frag && (ena_rx_ctx->l3_proto != ENA_ETH_IO_L3_PROTO_UNKNOWN)) { M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); return; } switch (ena_rx_ctx->l3_proto) { case ENA_ETH_IO_L3_PROTO_IPV4: switch (ena_rx_ctx->l4_proto) { case ENA_ETH_IO_L4_PROTO_TCP: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV4); break; case ENA_ETH_IO_L4_PROTO_UDP: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV4); break; default: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV4); } break; case ENA_ETH_IO_L3_PROTO_IPV6: switch (ena_rx_ctx->l4_proto) { case ENA_ETH_IO_L4_PROTO_TCP: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_TCP_IPV6); break; case ENA_ETH_IO_L4_PROTO_UDP: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_UDP_IPV6); break; default: M_HASHTYPE_SET(mbuf, M_HASHTYPE_RSS_IPV6); } break; case ENA_ETH_IO_L3_PROTO_UNKNOWN: M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); break; default: M_HASHTYPE_SET(mbuf, M_HASHTYPE_OPAQUE_HASH); } } else { mbuf->m_pkthdr.flowid = rx_ring->qid; M_HASHTYPE_SET(mbuf, M_HASHTYPE_NONE); } } #endif /** * ena_rx_mbuf - assemble mbuf from descriptors * @rx_ring: ring for which we want to clean packets * @ena_bufs: buffer info * @ena_rx_ctx: metadata for this packet(s) * @next_to_clean: ring pointer, will be updated only upon success * **/ static struct mbuf* ena_rx_mbuf(struct ena_ring *rx_ring, struct ena_com_rx_buf_info *ena_bufs, struct ena_com_rx_ctx *ena_rx_ctx, uint16_t *next_to_clean) { struct mbuf *mbuf; struct ena_rx_buffer *rx_info; struct ena_adapter *adapter; unsigned int descs = ena_rx_ctx->descs; uint16_t ntc, len, req_id, buf = 0; ntc = *next_to_clean; adapter = rx_ring->adapter; rx_info = &rx_ring->rx_buffer_info[ntc]; if (unlikely(rx_info->mbuf == NULL)) { device_printf(adapter->pdev, "NULL mbuf in rx_info"); return (NULL); } len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; ena_trace(ENA_DBG | ENA_RXPTH, "rx_info %p, mbuf %p, paddr %jx", rx_info, rx_info->mbuf, (uintmax_t)rx_info->ena_buf.paddr); mbuf = rx_info->mbuf; KASSERT(mbuf->m_flags & M_PKTHDR); mbuf->m_pkthdr.len = len; mbuf->m_len = len; m_set_rcvif(mbuf, rx_ring->que->adapter->ifp); /* Fill mbuf with hash key and it's interpretation for optimization */ #if 0 ena_rx_hash_mbuf(rx_ring, ena_rx_ctx, mbuf); #endif ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf 0x%p, flags=0x%x, len: %d", mbuf, mbuf->m_flags, mbuf->m_pkthdr.len); /* DMA address is not needed anymore, unmap it */ bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map); rx_info->mbuf = NULL; rx_ring->free_rx_ids[ntc] = req_id; ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); /* * While we have more than 1 descriptors for one rcvd packet, append * other mbufs to the main one */ while (--descs) { ++buf; len = ena_bufs[buf].len; req_id = ena_bufs[buf].req_id; rx_info = &rx_ring->rx_buffer_info[req_id]; if (unlikely(rx_info->mbuf == NULL)) { device_printf(adapter->pdev, "NULL mbuf in rx_info"); /* * If one of the required mbufs was not allocated yet, * we can break there. * All earlier used descriptors will be reallocated * later and not used mbufs can be reused. * The next_to_clean pointer will not be updated in case * of an error, so caller should advance it manually * in error handling routine to keep it up to date * with hw ring. */ m_freem(mbuf); return (NULL); } if (unlikely(m_append(mbuf, len, rx_info->mbuf->m_data) == 0)) { counter_u64_add(rx_ring->rx_stats.mbuf_alloc_fail, 1); ena_trace(ENA_WARNING, "Failed to append Rx mbuf %p", mbuf); } ena_trace(ENA_DBG | ENA_RXPTH, "rx mbuf updated. len %d", mbuf->m_pkthdr.len); /* Free already appended mbuf, it won't be useful anymore */ bus_dmamap_unload(rx_ring->adapter->sc_dmat, rx_info->map); m_freem(rx_info->mbuf); rx_info->mbuf = NULL; rx_ring->free_rx_ids[ntc] = req_id; ntc = ENA_RX_RING_IDX_NEXT(ntc, rx_ring->ring_size); } *next_to_clean = ntc; return (mbuf); } /** * ena_rx_checksum - indicate in mbuf if hw indicated a good cksum **/ static inline void ena_rx_checksum(struct ena_ring *rx_ring, struct ena_com_rx_ctx *ena_rx_ctx, struct mbuf *mbuf) { /* IPv4 */ if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4) { mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4; if (ena_rx_ctx->l3_csum_err) { /* ipv4 checksum error */ mbuf->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; counter_u64_add(rx_ring->rx_stats.bad_csum, 1); ena_trace(ENA_DBG, "RX IPv4 header checksum error"); return; } /* TCP/UDP */ if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) { mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv4 : M_CSUM_UDPv4; if (ena_rx_ctx->l4_csum_err) { /* TCP/UDP checksum error */ mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; counter_u64_add(rx_ring->rx_stats.bad_csum, 1); ena_trace(ENA_DBG, "RX L4 checksum error"); } } } /* IPv6 */ else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6) { /* TCP/UDP */ if ((ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) || (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)) { mbuf->m_pkthdr.csum_flags |= (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP) ? M_CSUM_TCPv6 : M_CSUM_UDPv6; if (ena_rx_ctx->l4_csum_err) { /* TCP/UDP checksum error */ mbuf->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; counter_u64_add(rx_ring->rx_stats.bad_csum, 1); ena_trace(ENA_DBG, "RX L4 checksum error"); } } } } static void ena_deferred_rx_cleanup(struct work *wk, void *arg) { struct ena_ring *rx_ring = arg; int budget = CLEAN_BUDGET; atomic_swap_uint(&rx_ring->task_pending, 0); ENA_RING_MTX_LOCK(rx_ring); /* * If deferred task was executed, perform cleanup of all awaiting * descs (or until given budget is depleted to avoid infinite loop). */ while (likely(budget--)) { if (ena_rx_cleanup(rx_ring) == 0) break; } ENA_RING_MTX_UNLOCK(rx_ring); } /** * ena_rx_cleanup - handle rx irq * @arg: ring for which irq is being handled **/ static int ena_rx_cleanup(struct ena_ring *rx_ring) { struct ena_adapter *adapter; struct mbuf *mbuf; struct ena_com_rx_ctx ena_rx_ctx; struct ena_com_io_cq* io_cq; struct ena_com_io_sq* io_sq; struct ifnet *ifp; uint16_t ena_qid; uint16_t next_to_clean; uint32_t refill_required; uint32_t refill_threshold; uint32_t do_if_input = 0; unsigned int qid; int rc, i; int budget = RX_BUDGET; adapter = rx_ring->que->adapter; ifp = adapter->ifp; qid = rx_ring->que->id; ena_qid = ENA_IO_RXQ_IDX(qid); io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; next_to_clean = rx_ring->next_to_clean; ena_trace(ENA_DBG, "rx: qid %d", qid); do { ena_rx_ctx.ena_bufs = rx_ring->ena_bufs; ena_rx_ctx.max_bufs = adapter->max_rx_sgl_size; ena_rx_ctx.descs = 0; rc = ena_com_rx_pkt(io_cq, io_sq, &ena_rx_ctx); if (unlikely(rc != 0)) goto error; if (unlikely(ena_rx_ctx.descs == 0)) break; ena_trace(ENA_DBG | ENA_RXPTH, "rx: q %d got packet from ena. " "descs #: %d l3 proto %d l4 proto %d hash: %x", rx_ring->qid, ena_rx_ctx.descs, ena_rx_ctx.l3_proto, ena_rx_ctx.l4_proto, ena_rx_ctx.hash); /* Receive mbuf from the ring */ mbuf = ena_rx_mbuf(rx_ring, rx_ring->ena_bufs, &ena_rx_ctx, &next_to_clean); /* Exit if we failed to retrieve a buffer */ if (unlikely(mbuf == NULL)) { for (i = 0; i < ena_rx_ctx.descs; ++i) { rx_ring->free_rx_ids[next_to_clean] = rx_ring->ena_bufs[i].req_id; next_to_clean = ENA_RX_RING_IDX_NEXT(next_to_clean, rx_ring->ring_size); } break; } if (((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0) || ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0) || ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0) || ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0) || ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)) { ena_rx_checksum(rx_ring, &ena_rx_ctx, mbuf); } counter_enter(); counter_u64_add_protected(rx_ring->rx_stats.bytes, mbuf->m_pkthdr.len); counter_u64_add_protected(adapter->hw_stats.rx_bytes, mbuf->m_pkthdr.len); counter_exit(); /* * LRO is only for IP/TCP packets and TCP checksum of the packet * should be computed by hardware. */ do_if_input = 1; #ifdef LRO if (((ifp->if_capenable & IFCAP_LRO) != 0) && ((mbuf->m_pkthdr.csum_flags & CSUM_IP_VALID) != 0) && (ena_rx_ctx.l4_proto == ENA_ETH_IO_L4_PROTO_TCP)) { /* * Send to the stack if: * - LRO not enabled, or * - no LRO resources, or * - lro enqueue fails */ if ((rx_ring->lro.lro_cnt != 0) && (tcp_lro_rx(&rx_ring->lro, mbuf, 0) == 0)) do_if_input = 0; } #endif if (do_if_input != 0) { ena_trace(ENA_DBG | ENA_RXPTH, "calling if_input() with mbuf %p", mbuf); if_percpuq_enqueue(ifp->if_percpuq, mbuf); } counter_enter(); counter_u64_add_protected(rx_ring->rx_stats.cnt, 1); counter_u64_add_protected(adapter->hw_stats.rx_packets, 1); counter_exit(); } while (--budget); rx_ring->next_to_clean = next_to_clean; refill_required = ena_com_free_desc(io_sq); refill_threshold = rx_ring->ring_size / ENA_RX_REFILL_THRESH_DIVIDER; if (refill_required > refill_threshold) { ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq); ena_refill_rx_bufs(rx_ring, refill_required); } #ifdef LRO tcp_lro_flush_all(&rx_ring->lro); #endif return (RX_BUDGET - budget); error: counter_u64_add(rx_ring->rx_stats.bad_desc_num, 1); return (RX_BUDGET - budget); } /********************************************************************* * * MSIX & Interrupt Service routine * **********************************************************************/ /** * ena_handle_msix - MSIX Interrupt Handler for admin/async queue * @arg: interrupt number **/ static int ena_intr_msix_mgmnt(void *arg) { struct ena_adapter *adapter = (struct ena_adapter *)arg; ena_com_admin_q_comp_intr_handler(adapter->ena_dev); if (likely(adapter->running)) ena_com_aenq_intr_handler(adapter->ena_dev, arg); return 1; } /** * ena_handle_msix - MSIX Interrupt Handler for Tx/Rx * @arg: interrupt number **/ static int ena_handle_msix(void *arg) { struct ena_que *que = arg; struct ena_adapter *adapter = que->adapter; struct ifnet *ifp = adapter->ifp; struct ena_ring *tx_ring; struct ena_ring *rx_ring; struct ena_com_io_cq* io_cq; struct ena_eth_io_intr_reg intr_reg; int qid, ena_qid; int txc, rxc, i; if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0)) return 0; ena_trace(ENA_DBG, "MSI-X TX/RX routine"); tx_ring = que->tx_ring; rx_ring = que->rx_ring; qid = que->id; ena_qid = ENA_IO_TXQ_IDX(qid); io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; for (i = 0; i < CLEAN_BUDGET; ++i) { /* * If lock cannot be acquired, then deferred cleanup task was * being executed and rx ring is being cleaned up in * another thread. */ if (likely(ENA_RING_MTX_TRYLOCK(rx_ring) != 0)) { rxc = ena_rx_cleanup(rx_ring); ENA_RING_MTX_UNLOCK(rx_ring); } else { rxc = 0; } /* Protection from calling ena_tx_cleanup from ena_start_xmit */ ENA_RING_MTX_LOCK(tx_ring); txc = ena_tx_cleanup(tx_ring); ENA_RING_MTX_UNLOCK(tx_ring); if (unlikely((if_getdrvflags(ifp) & IFF_RUNNING) == 0)) return 0; if ((txc != TX_BUDGET) && (rxc != RX_BUDGET)) break; } /* Signal that work is done and unmask interrupt */ ena_com_update_intr_reg(&intr_reg, RX_IRQ_INTERVAL, TX_IRQ_INTERVAL, true); ena_com_unmask_intr(io_cq, &intr_reg); return 1; } static int ena_enable_msix(struct ena_adapter *adapter) { int msix_req; int counts[PCI_INTR_TYPE_SIZE]; int max_type; /* Reserved the max msix vectors we might need */ msix_req = ENA_MAX_MSIX_VEC(adapter->num_queues); counts[PCI_INTR_TYPE_INTX] = 0; counts[PCI_INTR_TYPE_MSI] = 0; counts[PCI_INTR_TYPE_MSIX] = msix_req; max_type = PCI_INTR_TYPE_MSIX; if (pci_intr_alloc(&adapter->sc_pa, &adapter->sc_intrs, counts, max_type) != 0) { aprint_error_dev(adapter->pdev, "failed to allocate interrupt\n"); return ENOSPC; } adapter->sc_nintrs = counts[PCI_INTR_TYPE_MSIX]; if (counts[PCI_INTR_TYPE_MSIX] != msix_req) { device_printf(adapter->pdev, "Enable only %d MSI-x (out of %d), reduce " "the number of queues\n", adapter->sc_nintrs, msix_req); adapter->num_queues = adapter->sc_nintrs - ENA_ADMIN_MSIX_VEC; } return 0; } #if 0 static void ena_setup_io_intr(struct ena_adapter *adapter) { static int last_bind_cpu = -1; int irq_idx; for (int i = 0; i < adapter->num_queues; i++) { irq_idx = ENA_IO_IRQ_IDX(i); snprintf(adapter->irq_tbl[irq_idx].name, ENA_IRQNAME_SIZE, "%s-TxRx-%d", device_xname(adapter->pdev), i); adapter->irq_tbl[irq_idx].handler = ena_handle_msix; adapter->irq_tbl[irq_idx].data = &adapter->que[i]; adapter->irq_tbl[irq_idx].vector = adapter->msix_entries[irq_idx].vector; ena_trace(ENA_INFO | ENA_IOQ, "ena_setup_io_intr vector: %d\n", adapter->msix_entries[irq_idx].vector); #ifdef RSS adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu = rss_getcpu(i % rss_getnumbuckets()); #else /* * We still want to bind rings to the corresponding cpu * using something similar to the RSS round-robin technique. */ if (unlikely(last_bind_cpu < 0)) last_bind_cpu = CPU_FIRST(); adapter->que[i].cpu = adapter->irq_tbl[irq_idx].cpu = last_bind_cpu; last_bind_cpu = CPU_NEXT(last_bind_cpu); #endif } } #endif static int ena_request_mgmnt_irq(struct ena_adapter *adapter) { const char *intrstr; char intrbuf[PCI_INTRSTR_LEN]; char intr_xname[INTRDEVNAMEBUF]; pci_chipset_tag_t pc = adapter->sc_pa.pa_pc; const int irq_slot = ENA_MGMNT_IRQ_IDX; KASSERT(adapter->sc_intrs != NULL); KASSERT(adapter->sc_ihs[irq_slot] == NULL); snprintf(intr_xname, sizeof(intr_xname), "%s mgmnt", device_xname(adapter->pdev)); intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot], intrbuf, sizeof(intrbuf)); adapter->sc_ihs[irq_slot] = pci_intr_establish_xname( pc, adapter->sc_intrs[irq_slot], IPL_NET, ena_intr_msix_mgmnt, adapter, intr_xname); if (adapter->sc_ihs[irq_slot] == NULL) { device_printf(adapter->pdev, "failed to register " "interrupt handler for MGMNT irq %s\n", intrstr); return ENOMEM; } aprint_normal_dev(adapter->pdev, "for MGMNT interrupting at %s\n", intrstr); return 0; } static int ena_request_io_irq(struct ena_adapter *adapter) { const char *intrstr; char intrbuf[PCI_INTRSTR_LEN]; char intr_xname[INTRDEVNAMEBUF]; pci_chipset_tag_t pc = adapter->sc_pa.pa_pc; const int irq_off = ENA_IO_IRQ_FIRST_IDX; void *vih; kcpuset_t *affinity; int i; KASSERT(adapter->sc_intrs != NULL); kcpuset_create(&affinity, false); for (i = 0; i < adapter->num_queues; i++) { int irq_slot = i + irq_off; int affinity_to = (irq_slot) % ncpu; KASSERT((void *)adapter->sc_intrs[irq_slot] != NULL); KASSERT(adapter->sc_ihs[irq_slot] == NULL); snprintf(intr_xname, sizeof(intr_xname), "%s ioq%d", device_xname(adapter->pdev), i); intrstr = pci_intr_string(pc, adapter->sc_intrs[irq_slot], intrbuf, sizeof(intrbuf)); vih = pci_intr_establish_xname(adapter->sc_pa.pa_pc, adapter->sc_intrs[irq_slot], IPL_NET, ena_handle_msix, &adapter->que[i], intr_xname); if (adapter->sc_ihs[ENA_MGMNT_IRQ_IDX] == NULL) { device_printf(adapter->pdev, "failed to register " "interrupt handler for IO queue %d irq %s\n", i, intrstr); goto err; } kcpuset_zero(affinity); /* Round-robin affinity */ kcpuset_set(affinity, affinity_to); int error = interrupt_distribute(vih, affinity, NULL); if (error == 0) { aprint_normal_dev(adapter->pdev, "for IO queue %d interrupting at %s" " affinity to %u\n", i, intrstr, affinity_to); } else { aprint_normal_dev(adapter->pdev, "for IO queue %d interrupting at %s\n", i, intrstr); } adapter->sc_ihs[irq_slot] = vih; #ifdef RSS ena_trace(ENA_INFO, "queue %d - RSS bucket %d\n", i - ENA_IO_IRQ_FIRST_IDX, irq->cpu); #else ena_trace(ENA_INFO, "queue %d - cpu %d\n", i - ENA_IO_IRQ_FIRST_IDX, affinity_to); #endif } kcpuset_destroy(affinity); return 0; err: kcpuset_destroy(affinity); for (i--; i >= 0; i--) { int irq_slot __diagused = i + irq_off; KASSERT(adapter->sc_ihs[irq_slot] != NULL); pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]); adapter->sc_ihs[i] = NULL; } return ENOSPC; } static void ena_free_mgmnt_irq(struct ena_adapter *adapter) { const int irq_slot = ENA_MGMNT_IRQ_IDX; if (adapter->sc_ihs[irq_slot]) { pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[irq_slot]); adapter->sc_ihs[irq_slot] = NULL; } } static void ena_free_io_irq(struct ena_adapter *adapter) { const int irq_off = ENA_IO_IRQ_FIRST_IDX; for (int i = 0; i < adapter->num_queues; i++) { int irq_slot = i + irq_off; if (adapter->sc_ihs[irq_slot]) { pci_intr_disestablish(adapter->sc_pa.pa_pc, adapter->sc_ihs[i]); adapter->sc_ihs[i] = NULL; } } } static void ena_free_irqs(struct ena_adapter* adapter) { ena_free_io_irq(adapter); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); } static void ena_disable_msix(struct ena_adapter *adapter) { pci_intr_release(adapter->sc_pa.pa_pc, adapter->sc_intrs, adapter->sc_nintrs); } static void ena_unmask_all_io_irqs(struct ena_adapter *adapter) { struct ena_com_io_cq* io_cq; struct ena_eth_io_intr_reg intr_reg; uint16_t ena_qid; int i; /* Unmask interrupts for all queues */ for (i = 0; i < adapter->num_queues; i++) { ena_qid = ENA_IO_TXQ_IDX(i); io_cq = &adapter->ena_dev->io_cq_queues[ena_qid]; ena_com_update_intr_reg(&intr_reg, 0, 0, true); ena_com_unmask_intr(io_cq, &intr_reg); } } /* Configure the Rx forwarding */ static int ena_rss_configure(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; /* Set indirect table */ rc = ena_com_indirect_table_set(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); /* Configure hash function (if supported) */ rc = ena_com_set_hash_function(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); /* Configure hash inputs (if supported) */ rc = ena_com_set_hash_ctrl(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) return (rc); return (0); } static int ena_up_complete(struct ena_adapter *adapter) { int rc; if (likely(adapter->rss_support)) { rc = ena_rss_configure(adapter); if (rc != 0) return (rc); } rc = ena_change_mtu(adapter->ifp, adapter->ifp->if_mtu); if (unlikely(rc != 0)) return (rc); ena_refill_all_rx_bufs(adapter); ena_reset_counters((struct evcnt *)&adapter->hw_stats, sizeof(adapter->hw_stats), offsetof(struct ena_hw_stats, rx_packets)); return (0); } static int ena_up(struct ena_adapter *adapter) { int rc = 0; #if 0 if (unlikely(device_is_attached(adapter->pdev) == 0)) { device_printf(adapter->pdev, "device is not attached!\n"); return (ENXIO); } #endif if (unlikely(!adapter->running)) { device_printf(adapter->pdev, "device is not running!\n"); return (ENXIO); } if (!adapter->up) { device_printf(adapter->pdev, "device is going UP\n"); /* setup interrupts for IO queues */ rc = ena_request_io_irq(adapter); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "err_req_irq"); goto err_req_irq; } /* allocate transmit descriptors */ rc = ena_setup_all_tx_resources(adapter); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "err_setup_tx"); goto err_setup_tx; } /* allocate receive descriptors */ rc = ena_setup_all_rx_resources(adapter); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "err_setup_rx"); goto err_setup_rx; } /* create IO queues for Rx & Tx */ rc = ena_create_io_queues(adapter); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "create IO queues failed"); goto err_io_que; } if (unlikely(adapter->link_status)) if_link_state_change(adapter->ifp, LINK_STATE_UP); rc = ena_up_complete(adapter); if (unlikely(rc != 0)) goto err_up_complete; counter_u64_add(adapter->dev_stats.interface_up, 1); ena_update_hwassist(adapter); if_setdrvflagbits(adapter->ifp, IFF_RUNNING, IFF_OACTIVE); callout_reset(&adapter->timer_service, hz, ena_timer_service, (void *)adapter); adapter->up = true; ena_unmask_all_io_irqs(adapter); } return (0); err_up_complete: ena_destroy_all_io_queues(adapter); err_io_que: ena_free_all_rx_resources(adapter); err_setup_rx: ena_free_all_tx_resources(adapter); err_setup_tx: ena_free_io_irq(adapter); err_req_irq: return (rc); } #if 0 static uint64_t ena_get_counter(struct ifnet *ifp, ift_counter cnt) { struct ena_adapter *adapter; struct ena_hw_stats *stats; adapter = if_getsoftc(ifp); stats = &adapter->hw_stats; switch (cnt) { case IFCOUNTER_IPACKETS: return (counter_u64_fetch(stats->rx_packets)); case IFCOUNTER_OPACKETS: return (counter_u64_fetch(stats->tx_packets)); case IFCOUNTER_IBYTES: return (counter_u64_fetch(stats->rx_bytes)); case IFCOUNTER_OBYTES: return (counter_u64_fetch(stats->tx_bytes)); case IFCOUNTER_IQDROPS: return (counter_u64_fetch(stats->rx_drops)); default: return (if_get_counter_default(ifp, cnt)); } } #endif static int ena_media_change(struct ifnet *ifp) { /* Media Change is not supported by firmware */ return (0); } static void ena_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ena_adapter *adapter = if_getsoftc(ifp); ena_trace(ENA_DBG, "enter"); mutex_enter(&adapter->global_mtx); ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!adapter->link_status) { mutex_exit(&adapter->global_mtx); ena_trace(ENA_INFO, "link_status = false"); return; } ifmr->ifm_status |= IFM_ACTIVE; ifmr->ifm_active |= IFM_10G_T | IFM_FDX; mutex_exit(&adapter->global_mtx); } static int ena_init(struct ifnet *ifp) { struct ena_adapter *adapter = if_getsoftc(ifp); if (!adapter->up) { rw_enter(&adapter->ioctl_sx, RW_WRITER); ena_up(adapter); rw_exit(&adapter->ioctl_sx); } return 0; } static int ena_ioctl(struct ifnet *ifp, u_long command, void *data) { struct ena_adapter *adapter; struct ifreq *ifr; int rc; adapter = ifp->if_softc; ifr = (struct ifreq *)data; /* * Acquiring lock to prevent from running up and down routines parallel. */ rc = 0; switch (command) { case SIOCSIFMTU: if (ifp->if_mtu == ifr->ifr_mtu) break; rw_enter(&adapter->ioctl_sx, RW_WRITER); ena_down(adapter); ena_change_mtu(ifp, ifr->ifr_mtu); rc = ena_up(adapter); rw_exit(&adapter->ioctl_sx); break; case SIOCSIFFLAGS: if ((ifp->if_flags & IFF_UP) != 0) { if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) { if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { device_printf(adapter->pdev, "ioctl promisc/allmulti\n"); } } else { rw_enter(&adapter->ioctl_sx, RW_WRITER); rc = ena_up(adapter); rw_exit(&adapter->ioctl_sx); } } else { if ((if_getdrvflags(ifp) & IFF_RUNNING) != 0) { rw_enter(&adapter->ioctl_sx, RW_WRITER); ena_down(adapter); rw_exit(&adapter->ioctl_sx); } } break; case SIOCADDMULTI: case SIOCDELMULTI: break; case SIOCSIFCAP: { struct ifcapreq *ifcr = data; int reinit = 0; if (ifcr->ifcr_capenable != ifp->if_capenable) { ifp->if_capenable = ifcr->ifcr_capenable; reinit = 1; } if ((reinit != 0) && ((if_getdrvflags(ifp) & IFF_RUNNING) != 0)) { rw_enter(&adapter->ioctl_sx, RW_WRITER); ena_down(adapter); rc = ena_up(adapter); rw_exit(&adapter->ioctl_sx); } } break; default: rc = ether_ioctl(ifp, command, data); break; } return (rc); } static int ena_get_dev_offloads(struct ena_com_dev_get_features_ctx *feat) { int caps = 0; if ((feat->offload.tx & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK)) != 0) caps |= IFCAP_CSUM_IPv4_Tx; if ((feat->offload.tx & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV6_CSUM_PART_MASK)) != 0) caps |= IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx; if ((feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0) caps |= IFCAP_TSOv4; if ((feat->offload.tx & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV6_MASK) != 0) caps |= IFCAP_TSOv6; if ((feat->offload.rx_supported & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L3_CSUM_IPV4_MASK)) != 0) caps |= IFCAP_CSUM_IPv4_Rx; if ((feat->offload.rx_supported & ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV6_CSUM_MASK) != 0) caps |= IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx; caps |= IFCAP_LRO; return (caps); } static void ena_update_host_info(struct ena_admin_host_info *host_info, struct ifnet *ifp) { host_info->supported_network_features[0] = (uint32_t)if_getcapabilities(ifp); } static void ena_update_hwassist(struct ena_adapter *adapter) { struct ifnet *ifp = adapter->ifp; uint32_t feat = adapter->tx_offload_cap; int cap = if_getcapenable(ifp); int flags = 0; if_clearhwassist(ifp); if ((cap & (IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx)) != 0) { if ((feat & ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L3_CSUM_IPV4_MASK) != 0) flags |= M_CSUM_IPv4; if ((feat & (ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_FULL_MASK | ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK)) != 0) flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4; } if ((cap & IFCAP_CSUM_TCPv6_Tx) != 0) flags |= M_CSUM_TCPv6; if ((cap & IFCAP_CSUM_UDPv6_Tx) != 0) flags |= M_CSUM_UDPv6; if ((cap & IFCAP_TSOv4) != 0) flags |= M_CSUM_TSOv4; if ((cap & IFCAP_TSOv6) != 0) flags |= M_CSUM_TSOv6; if_sethwassistbits(ifp, flags, 0); } static int ena_setup_ifnet(device_t pdev, struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *feat) { struct ifnet *ifp; int caps = 0; ifp = adapter->ifp = &adapter->sc_ec.ec_if; if (unlikely(ifp == NULL)) { ena_trace(ENA_ALERT, "can not allocate ifnet structure\n"); return (ENXIO); } if_initname(ifp, "ena", device_unit(pdev)); if_setdev(ifp, pdev); if_setsoftc(ifp, adapter); if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); if_setinitfn(ifp, ena_init); if_settransmitfn(ifp, ena_mq_start); #if 0 if_setqflushfn(ifp, ena_qflush); #endif if_setioctlfn(ifp, ena_ioctl); #if 0 if_setgetcounterfn(ifp, ena_get_counter); #endif if_setsendqlen(ifp, adapter->tx_ring_size); if_setsendqready(ifp); if_setmtu(ifp, ETHERMTU); if_setbaudrate(ifp, 0); /* Zeroize capabilities... */ if_setcapabilities(ifp, 0); if_setcapenable(ifp, 0); /* check hardware support */ caps = ena_get_dev_offloads(feat); /* ... and set them */ if_setcapabilitiesbit(ifp, caps, 0); adapter->sc_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU; #if 0 /* TSO parameters */ /* XXX no limits on NetBSD, guarded by virtue of dmamap load failing */ ifp->if_hw_tsomax = ENA_TSO_MAXSIZE - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); ifp->if_hw_tsomaxsegcount = adapter->max_tx_sgl_size - 1; ifp->if_hw_tsomaxsegsize = ENA_TSO_MAXSIZE; #endif if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); if_setcapenable(ifp, if_getcapabilities(ifp)); /* * Specify the media types supported by this adapter and register * callbacks to update media and link information */ adapter->sc_ec.ec_ifmedia = &adapter->media; ifmedia_init(&adapter->media, IFM_IMASK, ena_media_change, ena_media_status); ifmedia_add(&adapter->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&adapter->media, IFM_ETHER | IFM_AUTO); if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, adapter->mac_addr); return (0); } static void ena_down(struct ena_adapter *adapter) { int rc; if (adapter->up) { device_printf(adapter->pdev, "device is going DOWN\n"); callout_halt(&adapter->timer_service, &adapter->global_mtx); adapter->up = false; if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING); ena_free_io_irq(adapter); if (adapter->trigger_reset) { rc = ena_com_dev_reset(adapter->ena_dev, adapter->reset_reason); if (unlikely(rc != 0)) device_printf(adapter->pdev, "Device reset failed\n"); } ena_destroy_all_io_queues(adapter); ena_free_all_tx_bufs(adapter); ena_free_all_rx_bufs(adapter); ena_free_all_tx_resources(adapter); ena_free_all_rx_resources(adapter); counter_u64_add(adapter->dev_stats.interface_down, 1); } } static void ena_tx_csum(struct ena_com_tx_ctx *ena_tx_ctx, struct mbuf *mbuf) { struct ena_com_tx_meta *ena_meta; struct ether_vlan_header *eh; u32 mss; bool offload; uint16_t etype; int ehdrlen; struct ip *ip; int iphlen; struct tcphdr *th; offload = false; ena_meta = &ena_tx_ctx->ena_meta; #if 0 u32 mss = mbuf->m_pkthdr.tso_segsz; if (mss != 0) offload = true; #else mss = mbuf->m_pkthdr.len; /* XXX don't have tso_segsz */ #endif if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) offload = true; if ((mbuf->m_pkthdr.csum_flags & CSUM_OFFLOAD) != 0) offload = true; if (!offload) { ena_tx_ctx->meta_valid = 0; return; } /* Determine where frame payload starts. */ eh = mtod(mbuf, struct ether_vlan_header *); if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) { etype = ntohs(eh->evl_proto); ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; } else { etype = htons(eh->evl_encap_proto); ehdrlen = ETHER_HDR_LEN; } ip = (struct ip *)(mbuf->m_data + ehdrlen); iphlen = ip->ip_hl << 2; th = (struct tcphdr *)((vaddr_t)ip + iphlen); if ((mbuf->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0) { ena_tx_ctx->l3_csum_enable = 1; } if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) { ena_tx_ctx->tso_enable = 1; ena_meta->l4_hdr_len = (th->th_off); } switch (etype) { case ETHERTYPE_IP: ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4; if ((ip->ip_off & htons(IP_DF)) != 0) ena_tx_ctx->df = 1; break; case ETHERTYPE_IPV6: ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6; default: break; } if (ip->ip_p == IPPROTO_TCP) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP; if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6)) != 0) ena_tx_ctx->l4_csum_enable = 1; else ena_tx_ctx->l4_csum_enable = 0; } else if (ip->ip_p == IPPROTO_UDP) { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP; if ((mbuf->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0) ena_tx_ctx->l4_csum_enable = 1; else ena_tx_ctx->l4_csum_enable = 0; } else { ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN; ena_tx_ctx->l4_csum_enable = 0; } ena_meta->mss = mss; ena_meta->l3_hdr_len = iphlen; ena_meta->l3_hdr_offset = ehdrlen; ena_tx_ctx->meta_valid = 1; } static int ena_check_and_collapse_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) { struct ena_adapter *adapter; struct mbuf *collapsed_mbuf; int num_frags; adapter = tx_ring->adapter; num_frags = ena_mbuf_count(*mbuf); /* One segment must be reserved for configuration descriptor. */ if (num_frags < adapter->max_tx_sgl_size) return (0); counter_u64_add(tx_ring->tx_stats.collapse, 1); collapsed_mbuf = m_collapse(*mbuf, M_NOWAIT, adapter->max_tx_sgl_size - 1); if (unlikely(collapsed_mbuf == NULL)) { counter_u64_add(tx_ring->tx_stats.collapse_err, 1); return (ENOMEM); } /* If mbuf was collapsed succesfully, original mbuf is released. */ *mbuf = collapsed_mbuf; return (0); } static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct mbuf **mbuf) { struct ena_adapter *adapter; struct ena_tx_buffer *tx_info; struct ena_com_tx_ctx ena_tx_ctx; struct ena_com_dev *ena_dev; struct ena_com_buf *ena_buf; struct ena_com_io_sq* io_sq; void *push_hdr; uint16_t next_to_use; uint16_t req_id; uint16_t ena_qid; uint32_t header_len; int i, rc; int nb_hw_desc; ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); adapter = tx_ring->que->adapter; ena_dev = adapter->ena_dev; io_sq = &ena_dev->io_sq_queues[ena_qid]; rc = ena_check_and_collapse_mbuf(tx_ring, mbuf); if (unlikely(rc != 0)) { ena_trace(ENA_WARNING, "Failed to collapse mbuf! err: %d", rc); return (rc); } next_to_use = tx_ring->next_to_use; req_id = tx_ring->free_tx_ids[next_to_use]; tx_info = &tx_ring->tx_buffer_info[req_id]; tx_info->mbuf = *mbuf; tx_info->num_of_bufs = 0; ena_buf = tx_info->bufs; ena_trace(ENA_DBG | ENA_TXPTH, "Tx: %d bytes", (*mbuf)->m_pkthdr.len); /* * header_len is just a hint for the device. Because FreeBSD is not * giving us information about packet header length and it is not * guaranteed that all packet headers will be in the 1st mbuf, setting * header_len to 0 is making the device ignore this value and resolve * header on it's own. */ header_len = 0; push_hdr = NULL; rc = bus_dmamap_load_mbuf(adapter->sc_dmat, tx_info->map, *mbuf, BUS_DMA_NOWAIT); if (unlikely((rc != 0) || (tx_info->map->dm_nsegs == 0))) { ena_trace(ENA_WARNING, "dmamap load failed! err: %d nsegs: %d", rc, tx_info->map->dm_nsegs); counter_u64_add(tx_ring->tx_stats.dma_mapping_err, 1); tx_info->mbuf = NULL; if (rc == ENOMEM) return (ENA_COM_NO_MEM); else return (ENA_COM_INVAL); } for (i = 0; i < tx_info->map->dm_nsegs; i++) { ena_buf->len = tx_info->map->dm_segs[i].ds_len; ena_buf->paddr = tx_info->map->dm_segs[i].ds_addr; ena_buf++; } tx_info->num_of_bufs = tx_info->map->dm_nsegs; memset(&ena_tx_ctx, 0x0, sizeof(struct ena_com_tx_ctx)); ena_tx_ctx.ena_bufs = tx_info->bufs; ena_tx_ctx.push_header = push_hdr; ena_tx_ctx.num_bufs = tx_info->num_of_bufs; ena_tx_ctx.req_id = req_id; ena_tx_ctx.header_len = header_len; /* Set flags and meta data */ ena_tx_csum(&ena_tx_ctx, *mbuf); /* Prepare the packet's descriptors and send them to device */ rc = ena_com_prepare_tx(io_sq, &ena_tx_ctx, &nb_hw_desc); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "failed to prepare tx bufs\n"); counter_u64_add(tx_ring->tx_stats.prepare_ctx_err, 1); goto dma_error; } counter_enter(); counter_u64_add_protected(tx_ring->tx_stats.cnt, 1); counter_u64_add_protected(tx_ring->tx_stats.bytes, (*mbuf)->m_pkthdr.len); counter_u64_add_protected(adapter->hw_stats.tx_packets, 1); counter_u64_add_protected(adapter->hw_stats.tx_bytes, (*mbuf)->m_pkthdr.len); counter_exit(); tx_info->tx_descs = nb_hw_desc; getbinuptime(&tx_info->timestamp); tx_info->print_once = true; tx_ring->next_to_use = ENA_TX_RING_IDX_NEXT(next_to_use, tx_ring->ring_size); bus_dmamap_sync(adapter->sc_dmat, tx_info->map, 0, tx_info->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return (0); dma_error: tx_info->mbuf = NULL; bus_dmamap_unload(adapter->sc_dmat, tx_info->map); return (rc); } static void ena_start_xmit(struct ena_ring *tx_ring) { struct mbuf *mbuf; struct ena_adapter *adapter = tx_ring->adapter; struct ena_com_io_sq* io_sq; int ena_qid; int acum_pkts = 0; int ret = 0; if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0)) return; if (unlikely(!adapter->link_status)) return; ena_qid = ENA_IO_TXQ_IDX(tx_ring->que->id); io_sq = &adapter->ena_dev->io_sq_queues[ena_qid]; while ((mbuf = drbr_peek(adapter->ifp, tx_ring->br)) != NULL) { ena_trace(ENA_DBG | ENA_TXPTH, "\ndequeued mbuf %p with flags %#x and" " header csum flags %#jx", mbuf, mbuf->m_flags, (uint64_t)mbuf->m_pkthdr.csum_flags); if (unlikely(!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD))) ena_tx_cleanup(tx_ring); if (unlikely((ret = ena_xmit_mbuf(tx_ring, &mbuf)) != 0)) { if (ret == ENA_COM_NO_MEM) { drbr_putback(adapter->ifp, tx_ring->br, mbuf); } else if (ret == ENA_COM_NO_SPACE) { drbr_putback(adapter->ifp, tx_ring->br, mbuf); } else { m_freem(mbuf); drbr_advance(adapter->ifp, tx_ring->br); } break; } drbr_advance(adapter->ifp, tx_ring->br); if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0)) return; acum_pkts++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(adapter->ifp, mbuf, BPF_D_OUT); if (unlikely(acum_pkts == DB_THRESHOLD)) { acum_pkts = 0; wmb(); /* Trigger the dma engine */ ena_com_write_sq_doorbell(io_sq); counter_u64_add(tx_ring->tx_stats.doorbells, 1); } } if (likely(acum_pkts != 0)) { wmb(); /* Trigger the dma engine */ ena_com_write_sq_doorbell(io_sq); counter_u64_add(tx_ring->tx_stats.doorbells, 1); } if (!ena_com_sq_have_enough_space(io_sq, ENA_TX_CLEANUP_THRESHOLD)) ena_tx_cleanup(tx_ring); } static void ena_deferred_mq_start(struct work *wk, void *arg) { struct ena_ring *tx_ring = (struct ena_ring *)arg; struct ifnet *ifp = tx_ring->adapter->ifp; atomic_swap_uint(&tx_ring->task_pending, 0); while (!drbr_empty(ifp, tx_ring->br) && (if_getdrvflags(ifp) & IFF_RUNNING) != 0) { ENA_RING_MTX_LOCK(tx_ring); ena_start_xmit(tx_ring); ENA_RING_MTX_UNLOCK(tx_ring); } } static int ena_mq_start(struct ifnet *ifp, struct mbuf *m) { struct ena_adapter *adapter = ifp->if_softc; struct ena_ring *tx_ring; int ret, is_drbr_empty; uint32_t i; if (unlikely((if_getdrvflags(adapter->ifp) & IFF_RUNNING) == 0)) return (ENODEV); /* Which queue to use */ /* * If everything is setup correctly, it should be the * same bucket that the current CPU we're on is. * It should improve performance. */ #if 0 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) { #ifdef RSS if (rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m), &i) == 0) { i = i % adapter->num_queues; } else #endif { i = m->m_pkthdr.flowid % adapter->num_queues; } } else { #endif i = cpu_index(curcpu()) % adapter->num_queues; #if 0 } #endif tx_ring = &adapter->tx_ring[i]; /* Check if drbr is empty before putting packet */ is_drbr_empty = drbr_empty(ifp, tx_ring->br); ret = drbr_enqueue(ifp, tx_ring->br, m); if (unlikely(ret != 0)) { if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0) workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, curcpu()); return (ret); } if ((is_drbr_empty != 0) && (ENA_RING_MTX_TRYLOCK(tx_ring) != 0)) { ena_start_xmit(tx_ring); ENA_RING_MTX_UNLOCK(tx_ring); } else { if (atomic_cas_uint(&tx_ring->task_pending, 0, 1) == 0) workqueue_enqueue(tx_ring->enqueue_tq, &tx_ring->enqueue_task, curcpu()); } return (0); } #if 0 static void ena_qflush(struct ifnet *ifp) { struct ena_adapter *adapter = ifp->if_softc; struct ena_ring *tx_ring = adapter->tx_ring; int i; for(i = 0; i < adapter->num_queues; ++i, ++tx_ring) if (!drbr_empty(ifp, tx_ring->br)) { ENA_RING_MTX_LOCK(tx_ring); drbr_flush(ifp, tx_ring->br); ENA_RING_MTX_UNLOCK(tx_ring); } if_qflush(ifp); } #endif static int ena_calc_io_queue_num(struct pci_attach_args *pa, struct ena_adapter *adapter, struct ena_com_dev_get_features_ctx *get_feat_ctx) { int io_sq_num, io_cq_num, io_queue_num; io_sq_num = get_feat_ctx->max_queues.max_sq_num; io_cq_num = get_feat_ctx->max_queues.max_cq_num; io_queue_num = min_t(int, mp_ncpus, ENA_MAX_NUM_IO_QUEUES); io_queue_num = min_t(int, io_queue_num, io_sq_num); io_queue_num = min_t(int, io_queue_num, io_cq_num); /* 1 IRQ for for mgmnt and 1 IRQ for each TX/RX pair */ io_queue_num = min_t(int, io_queue_num, pci_msix_count(pa->pa_pc, pa->pa_tag) - 1); #ifdef RSS io_queue_num = min_t(int, io_queue_num, rss_getnumbuckets()); #endif return (io_queue_num); } static int ena_calc_queue_size(struct ena_adapter *adapter, uint16_t *max_tx_sgl_size, uint16_t *max_rx_sgl_size, struct ena_com_dev_get_features_ctx *feat) { uint32_t queue_size = ENA_DEFAULT_RING_SIZE; uint32_t v; uint32_t q; queue_size = min_t(uint32_t, queue_size, feat->max_queues.max_cq_depth); queue_size = min_t(uint32_t, queue_size, feat->max_queues.max_sq_depth); /* round down to the nearest power of 2 */ v = queue_size; while (v != 0) { if (powerof2(queue_size) != 0) break; v /= 2; q = rounddown2(queue_size, v); if (q != 0) { queue_size = q; break; } } if (unlikely(queue_size == 0)) { device_printf(adapter->pdev, "Invalid queue size\n"); return (ENA_COM_FAULT); } *max_tx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, feat->max_queues.max_packet_tx_descs); *max_rx_sgl_size = min_t(uint16_t, ENA_PKT_MAX_BUFS, feat->max_queues.max_packet_rx_descs); return (queue_size); } #if 0 static int ena_rss_init_default(struct ena_adapter *adapter) { struct ena_com_dev *ena_dev = adapter->ena_dev; device_t dev = adapter->pdev; int qid, rc, i; rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE); if (unlikely(rc != 0)) { device_printf(dev, "Cannot init indirect table\n"); return (rc); } for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) { #ifdef RSS qid = rss_get_indirection_to_bucket(i); qid = qid % adapter->num_queues; #else qid = i % adapter->num_queues; #endif rc = ena_com_indirect_table_fill_entry(ena_dev, i, ENA_IO_RXQ_IDX(qid)); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { device_printf(dev, "Cannot fill indirect table\n"); goto err_rss_destroy; } } rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL, ENA_HASH_KEY_SIZE, 0xFFFFFFFF); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { device_printf(dev, "Cannot fill hash function\n"); goto err_rss_destroy; } rc = ena_com_set_default_hash_ctrl(ena_dev); if (unlikely((rc != 0) && (rc != EOPNOTSUPP))) { device_printf(dev, "Cannot fill hash control\n"); goto err_rss_destroy; } return (0); err_rss_destroy: ena_com_rss_destroy(ena_dev); return (rc); } static void ena_rss_init_default_deferred(void *arg) { struct ena_adapter *adapter; devclass_t dc; int max; int rc; dc = devclass_find("ena"); if (unlikely(dc == NULL)) { ena_trace(ENA_ALERT, "No devclass ena\n"); return; } max = devclass_get_maxunit(dc); while (max-- >= 0) { adapter = devclass_get_softc(dc, max); if (adapter != NULL) { rc = ena_rss_init_default(adapter); adapter->rss_support = true; if (unlikely(rc != 0)) { device_printf(adapter->pdev, "WARNING: RSS was not properly initialized," " it will affect bandwidth\n"); adapter->rss_support = false; } } } } SYSINIT(ena_rss_init, SI_SUB_KICK_SCHEDULER, SI_ORDER_SECOND, ena_rss_init_default_deferred, NULL); #endif static void ena_config_host_info(struct ena_com_dev *ena_dev) { struct ena_admin_host_info *host_info; int rc; /* Allocate only the host info */ rc = ena_com_allocate_host_info(ena_dev); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "Cannot allocate host info\n"); return; } host_info = ena_dev->host_attr.host_info; host_info->os_type = ENA_ADMIN_OS_FREEBSD; host_info->kernel_ver = osreldate; snprintf(host_info->kernel_ver_str, sizeof(host_info->kernel_ver_str), "%d", osreldate); host_info->os_dist = 0; strncpy(host_info->os_dist_str, osrelease, sizeof(host_info->os_dist_str) - 1); host_info->driver_version = (DRV_MODULE_VER_MAJOR) | (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) | (DRV_MODULE_VER_SUBMINOR << ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT); rc = ena_com_set_host_attributes(ena_dev); if (unlikely(rc != 0)) { if (rc == EOPNOTSUPP) ena_trace(ENA_WARNING, "Cannot set host attributes\n"); else ena_trace(ENA_ALERT, "Cannot set host attributes\n"); goto err; } return; err: ena_com_delete_host_info(ena_dev); } static int ena_device_init(struct ena_adapter *adapter, device_t pdev, struct ena_com_dev_get_features_ctx *get_feat_ctx, int *wd_active) { struct ena_com_dev* ena_dev = adapter->ena_dev; bool readless_supported; uint32_t aenq_groups; int dma_width; int rc; rc = ena_com_mmio_reg_read_request_init(ena_dev); if (unlikely(rc != 0)) { device_printf(pdev, "failed to init mmio read less\n"); return (rc); } /* * The PCIe configuration space revision id indicate if mmio reg * read is disabled */ const int rev = PCI_REVISION(adapter->sc_pa.pa_class); readless_supported = ((rev & ENA_MMIO_DISABLE_REG_READ) == 0); ena_com_set_mmio_read_mode(ena_dev, readless_supported); rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL); if (unlikely(rc != 0)) { device_printf(pdev, "Can not reset device\n"); goto err_mmio_read_less; } rc = ena_com_validate_version(ena_dev); if (unlikely(rc != 0)) { device_printf(pdev, "device version is too low\n"); goto err_mmio_read_less; } dma_width = ena_com_get_dma_width(ena_dev); if (unlikely(dma_width < 0)) { device_printf(pdev, "Invalid dma width value %d", dma_width); rc = dma_width; goto err_mmio_read_less; } adapter->dma_width = dma_width; /* ENA admin level init */ rc = ena_com_admin_init(ena_dev, &aenq_handlers, true); if (unlikely(rc != 0)) { device_printf(pdev, "Can not initialize ena admin queue with device\n"); goto err_mmio_read_less; } /* * To enable the msix interrupts the driver needs to know the number * of queues. So the driver uses polling mode to retrieve this * information */ ena_com_set_admin_polling_mode(ena_dev, true); ena_config_host_info(ena_dev); /* Get Device Attributes */ rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx); if (unlikely(rc != 0)) { device_printf(pdev, "Cannot get attribute for ena device rc: %d\n", rc); goto err_admin_init; } aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) | BIT(ENA_ADMIN_KEEP_ALIVE); aenq_groups &= get_feat_ctx->aenq.supported_groups; rc = ena_com_set_aenq_config(ena_dev, aenq_groups); if (unlikely(rc != 0)) { device_printf(pdev, "Cannot configure aenq groups rc: %d\n", rc); goto err_admin_init; } *wd_active = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE)); return (0); err_admin_init: ena_com_delete_host_info(ena_dev); ena_com_admin_destroy(ena_dev); err_mmio_read_less: ena_com_mmio_reg_read_request_destroy(ena_dev); return (rc); } static int ena_enable_msix_and_set_admin_interrupts(struct ena_adapter *adapter, int io_vectors) { struct ena_com_dev *ena_dev = adapter->ena_dev; int rc; rc = ena_enable_msix(adapter); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Error with MSI-X enablement\n"); return (rc); } rc = ena_request_mgmnt_irq(adapter); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Cannot setup mgmnt queue intr\n"); goto err_disable_msix; } ena_com_set_admin_polling_mode(ena_dev, false); ena_com_admin_aenq_enable(ena_dev); return (0); err_disable_msix: ena_disable_msix(adapter); return (rc); } /* Function called on ENA_ADMIN_KEEP_ALIVE event */ static void ena_keep_alive_wd(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_keep_alive_desc *desc; sbintime_t stime; uint64_t rx_drops; desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e; rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low; counter_u64_zero(adapter->hw_stats.rx_drops); counter_u64_add(adapter->hw_stats.rx_drops, rx_drops); stime = getsbinuptime(); (void) atomic_swap_64(&adapter->keep_alive_timestamp, stime); } /* Check for keep alive expiration */ static void check_for_missing_keep_alive(struct ena_adapter *adapter) { sbintime_t timestamp, time; if (adapter->wd_active == 0) return; if (likely(adapter->keep_alive_timeout == 0)) return; /* FreeBSD uses atomic_load_acq_64() in place of the membar + read */ membar_sync(); timestamp = adapter->keep_alive_timestamp; time = getsbinuptime() - timestamp; if (unlikely(time > adapter->keep_alive_timeout)) { device_printf(adapter->pdev, "Keep alive watchdog timeout.\n"); counter_u64_add(adapter->dev_stats.wd_expired, 1); adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO; adapter->trigger_reset = true; } } /* Check if admin queue is enabled */ static void check_for_admin_com_state(struct ena_adapter *adapter) { if (unlikely(ena_com_get_admin_running_state(adapter->ena_dev) == false)) { device_printf(adapter->pdev, "ENA admin queue is not in running state!\n"); counter_u64_add(adapter->dev_stats.admin_q_pause, 1); adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO; adapter->trigger_reset = true; } } static int check_missing_comp_in_queue(struct ena_adapter *adapter, struct ena_ring *tx_ring) { struct bintime curtime, time; struct ena_tx_buffer *tx_buf; uint32_t missed_tx = 0; int i; getbinuptime(&curtime); for (i = 0; i < tx_ring->ring_size; i++) { tx_buf = &tx_ring->tx_buffer_info[i]; if (bintime_isset(&tx_buf->timestamp) == 0) continue; time = curtime; bintime_sub(&time, &tx_buf->timestamp); /* Check again if packet is still waiting */ if (unlikely(bttosbt(time) > adapter->missing_tx_timeout)) { if (!tx_buf->print_once) ena_trace(ENA_WARNING, "Found a Tx that wasn't " "completed on time, qid %d, index %d.\n", tx_ring->qid, i); tx_buf->print_once = true; missed_tx++; counter_u64_add(tx_ring->tx_stats.missing_tx_comp, 1); if (unlikely(missed_tx > adapter->missing_tx_threshold)) { device_printf(adapter->pdev, "The number of lost tx completion " "is above the threshold (%d > %d). " "Reset the device\n", missed_tx, adapter->missing_tx_threshold); adapter->reset_reason = ENA_REGS_RESET_MISS_TX_CMPL; adapter->trigger_reset = true; return (EIO); } } } return (0); } /* * Check for TX which were not completed on time. * Timeout is defined by "missing_tx_timeout". * Reset will be performed if number of incompleted * transactions exceeds "missing_tx_threshold". */ static void check_for_missing_tx_completions(struct ena_adapter *adapter) { struct ena_ring *tx_ring; int i, budget, rc; /* Make sure the driver doesn't turn the device in other process */ rmb(); if (!adapter->up) return; if (adapter->trigger_reset) return; if (adapter->missing_tx_timeout == 0) return; budget = adapter->missing_tx_max_queues; for (i = adapter->next_monitored_tx_qid; i < adapter->num_queues; i++) { tx_ring = &adapter->tx_ring[i]; rc = check_missing_comp_in_queue(adapter, tx_ring); if (unlikely(rc != 0)) return; budget--; if (budget == 0) { i++; break; } } adapter->next_monitored_tx_qid = i % adapter->num_queues; } /* trigger deferred rx cleanup after 2 consecutive detections */ #define EMPTY_RX_REFILL 2 /* For the rare case where the device runs out of Rx descriptors and the * msix handler failed to refill new Rx descriptors (due to a lack of memory * for example). * This case will lead to a deadlock: * The device won't send interrupts since all the new Rx packets will be dropped * The msix handler won't allocate new Rx descriptors so the device won't be * able to send new packets. * * When such a situation is detected - execute rx cleanup task in another thread */ static void check_for_empty_rx_ring(struct ena_adapter *adapter) { struct ena_ring *rx_ring; int i, refill_required; if (!adapter->up) return; if (adapter->trigger_reset) return; for (i = 0; i < adapter->num_queues; i++) { rx_ring = &adapter->rx_ring[i]; refill_required = ena_com_free_desc(rx_ring->ena_com_io_sq); if (unlikely(refill_required == (rx_ring->ring_size - 1))) { rx_ring->empty_rx_queue++; if (rx_ring->empty_rx_queue >= EMPTY_RX_REFILL) { counter_u64_add(rx_ring->rx_stats.empty_rx_ring, 1); device_printf(adapter->pdev, "trigger refill for ring %d\n", i); if (atomic_cas_uint(&rx_ring->task_pending, 0, 1) == 0) workqueue_enqueue(rx_ring->cmpl_tq, &rx_ring->cmpl_task, curcpu()); rx_ring->empty_rx_queue = 0; } } else { rx_ring->empty_rx_queue = 0; } } } static void ena_timer_service(void *data) { struct ena_adapter *adapter = (struct ena_adapter *)data; struct ena_admin_host_info *host_info = adapter->ena_dev->host_attr.host_info; check_for_missing_keep_alive(adapter); check_for_admin_com_state(adapter); check_for_missing_tx_completions(adapter); check_for_empty_rx_ring(adapter); if (host_info != NULL) ena_update_host_info(host_info, adapter->ifp); if (unlikely(adapter->trigger_reset)) { device_printf(adapter->pdev, "Trigger reset is on\n"); workqueue_enqueue(adapter->reset_tq, &adapter->reset_task, curcpu()); return; } /* * Schedule another timeout one second from now. */ callout_schedule(&adapter->timer_service, hz); } static void ena_reset_task(struct work *wk, void *arg) { struct ena_com_dev_get_features_ctx get_feat_ctx; struct ena_adapter *adapter = (struct ena_adapter *)arg; struct ena_com_dev *ena_dev = adapter->ena_dev; bool dev_up; int rc; if (unlikely(!adapter->trigger_reset)) { device_printf(adapter->pdev, "device reset scheduled but trigger_reset is off\n"); return; } rw_enter(&adapter->ioctl_sx, RW_WRITER); callout_halt(&adapter->timer_service, &adapter->global_mtx); dev_up = adapter->up; ena_com_set_admin_running_state(ena_dev, false); ena_down(adapter); ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); adapter->reset_reason = ENA_REGS_RESET_NORMAL; adapter->trigger_reset = false; /* Finished destroy part. Restart the device */ rc = ena_device_init(adapter, adapter->pdev, &get_feat_ctx, &adapter->wd_active); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "ENA device init failed! (err: %d)\n", rc); goto err_dev_free; } /* XXX dealloc and realloc MSI-X, probably a waste */ rc = ena_enable_msix_and_set_admin_interrupts(adapter, adapter->num_queues); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Enable MSI-X failed\n"); goto err_com_free; } /* If the interface was up before the reset bring it up */ if (dev_up) { rc = ena_up(adapter); if (unlikely(rc != 0)) { device_printf(adapter->pdev, "Failed to create I/O queues\n"); goto err_msix_free; } } callout_reset(&adapter->timer_service, hz, ena_timer_service, (void *)adapter); rw_exit(&adapter->ioctl_sx); return; err_msix_free: ena_free_mgmnt_irq(adapter); ena_disable_msix(adapter); err_com_free: ena_com_admin_destroy(ena_dev); err_dev_free: device_printf(adapter->pdev, "ENA reset failed!\n"); adapter->running = false; rw_exit(&adapter->ioctl_sx); } /** * ena_attach - Device Initialization Routine * @pdev: device information struct * * Returns 0 on success, otherwise on failure. * * ena_attach initializes an adapter identified by a device structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. **/ static void ena_attach(device_t parent, device_t self, void *aux) { struct pci_attach_args *pa = aux; struct ena_com_dev_get_features_ctx get_feat_ctx; static int version_printed; struct ena_adapter *adapter = device_private(self); struct ena_com_dev *ena_dev = NULL; uint16_t tx_sgl_size = 0; uint16_t rx_sgl_size = 0; pcireg_t reg; int io_queue_num; int queue_size; int rc; adapter->pdev = self; adapter->ifp = &adapter->sc_ec.ec_if; adapter->sc_pa = *pa; /* used after attach for adapter reset too */ if (pci_dma64_available(pa)) adapter->sc_dmat = pa->pa_dmat64; else adapter->sc_dmat = pa->pa_dmat; pci_aprint_devinfo(pa, NULL); reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if ((reg & PCI_COMMAND_MASTER_ENABLE) == 0) { reg |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg); } mutex_init(&adapter->global_mtx, MUTEX_DEFAULT, IPL_NET); rw_init(&adapter->ioctl_sx); /* Set up the timer service */ adapter->keep_alive_timeout = DEFAULT_KEEP_ALIVE_TO; adapter->missing_tx_timeout = DEFAULT_TX_CMP_TO; adapter->missing_tx_max_queues = DEFAULT_TX_MONITORED_QUEUES; adapter->missing_tx_threshold = DEFAULT_TX_CMP_THRESHOLD; if (version_printed++ == 0) device_printf(parent, "%s\n", ena_version); rc = ena_allocate_pci_resources(pa, adapter); if (unlikely(rc != 0)) { device_printf(parent, "PCI resource allocation failed!\n"); ena_free_pci_resources(adapter); return; } /* Allocate memory for ena_dev structure */ ena_dev = malloc(sizeof(struct ena_com_dev), M_DEVBUF, M_WAITOK | M_ZERO); adapter->ena_dev = ena_dev; ena_dev->dmadev = self; ena_dev->bus = malloc(sizeof(struct ena_bus), M_DEVBUF, M_WAITOK | M_ZERO); /* Store register resources */ ((struct ena_bus*)(ena_dev->bus))->reg_bar_t = adapter->sc_btag; ((struct ena_bus*)(ena_dev->bus))->reg_bar_h = adapter->sc_bhandle; ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST; /* Device initialization */ rc = ena_device_init(adapter, self, &get_feat_ctx, &adapter->wd_active); if (unlikely(rc != 0)) { device_printf(self, "ENA device init failed! (err: %d)\n", rc); rc = ENXIO; goto err_bus_free; } adapter->keep_alive_timestamp = getsbinuptime(); adapter->tx_offload_cap = get_feat_ctx.offload.tx; /* Set for sure that interface is not up */ adapter->up = false; memcpy(adapter->mac_addr, get_feat_ctx.dev_attr.mac_addr, ETHER_ADDR_LEN); /* calculate IO queue number to create */ io_queue_num = ena_calc_io_queue_num(pa, adapter, &get_feat_ctx); ENA_ASSERT(io_queue_num > 0, "Invalid queue number: %d\n", io_queue_num); adapter->num_queues = io_queue_num; adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu; /* calculatre ring sizes */ queue_size = ena_calc_queue_size(adapter,&tx_sgl_size, &rx_sgl_size, &get_feat_ctx); if (unlikely((queue_size <= 0) || (io_queue_num <= 0))) { rc = ENA_COM_FAULT; goto err_com_free; } adapter->reset_reason = ENA_REGS_RESET_NORMAL; adapter->tx_ring_size = queue_size; adapter->rx_ring_size = queue_size; adapter->max_tx_sgl_size = tx_sgl_size; adapter->max_rx_sgl_size = rx_sgl_size; #if 0 /* set up dma tags for rx and tx buffers */ rc = ena_setup_tx_dma_tag(adapter); if (unlikely(rc != 0)) { device_printf(self, "Failed to create TX DMA tag\n"); goto err_com_free; } rc = ena_setup_rx_dma_tag(adapter); if (unlikely(rc != 0)) { device_printf(self, "Failed to create RX DMA tag\n"); goto err_tx_tag_free; } #endif /* initialize rings basic information */ device_printf(self, "initalize %d io queues\n", io_queue_num); ena_init_io_rings(adapter); /* setup network interface */ rc = ena_setup_ifnet(self, adapter, &get_feat_ctx); if (unlikely(rc != 0)) { device_printf(self, "Error with network interface setup\n"); goto err_io_free; } rc = ena_enable_msix_and_set_admin_interrupts(adapter, io_queue_num); if (unlikely(rc != 0)) { device_printf(self, "Failed to enable and set the admin interrupts\n"); goto err_ifp_free; } callout_init(&adapter->timer_service, CALLOUT_FLAGS); /* Initialize reset task queue */ rc = workqueue_create(&adapter->reset_tq, "ena_reset_enq", ena_reset_task, adapter, 0, IPL_NET, WQ_PERCPU | WQ_FLAGS); if (unlikely(rc != 0)) { ena_trace(ENA_ALERT, "Unable to create workqueue for reset task\n"); goto err_ifp_free; } /* Initialize statistics */ ena_alloc_counters_dev(&adapter->dev_stats, io_queue_num); ena_alloc_counters_hwstats(&adapter->hw_stats, io_queue_num); #if 0 ena_sysctl_add_nodes(adapter); #endif /* Tell the stack that the interface is not active */ if_setdrvflagbits(adapter->ifp, IFF_OACTIVE, IFF_RUNNING); adapter->running = true; return; err_ifp_free: if_detach(adapter->ifp); if_free(adapter->ifp); err_io_free: ena_free_all_io_rings_resources(adapter); #if 0 ena_free_rx_dma_tag(adapter); err_tx_tag_free: ena_free_tx_dma_tag(adapter); #endif err_com_free: ena_com_admin_destroy(ena_dev); ena_com_delete_host_info(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); err_bus_free: free(ena_dev->bus, M_DEVBUF); free(ena_dev, M_DEVBUF); ena_free_pci_resources(adapter); } /** * ena_detach - Device Removal Routine * @pdev: device information struct * * ena_detach is called by the device subsystem to alert the driver * that it should release a PCI device. **/ static int ena_detach(device_t pdev, int flags) { struct ena_adapter *adapter = device_private(pdev); struct ena_com_dev *ena_dev = adapter->ena_dev; #if 0 int rc; #endif /* Make sure VLANS are not using driver */ if (VLAN_ATTACHED(&adapter->sc_ec)) { device_printf(adapter->pdev ,"VLAN is in use, detach first\n"); return (EBUSY); } /* Free reset task and callout */ callout_halt(&adapter->timer_service, &adapter->global_mtx); callout_destroy(&adapter->timer_service); workqueue_wait(adapter->reset_tq, &adapter->reset_task); workqueue_destroy(adapter->reset_tq); adapter->reset_tq = NULL; rw_enter(&adapter->ioctl_sx, RW_WRITER); ena_down(adapter); rw_exit(&adapter->ioctl_sx); if (adapter->ifp != NULL) { ether_ifdetach(adapter->ifp); if_free(adapter->ifp); } ena_free_all_io_rings_resources(adapter); ena_free_counters((struct evcnt *)&adapter->hw_stats, sizeof(struct ena_hw_stats), offsetof(struct ena_hw_stats, rx_packets)); ena_free_counters((struct evcnt *)&adapter->dev_stats, sizeof(struct ena_stats_dev), offsetof(struct ena_stats_dev, wd_expired)); if (likely(adapter->rss_support)) ena_com_rss_destroy(ena_dev); #if 0 rc = ena_free_rx_dma_tag(adapter); if (unlikely(rc != 0)) device_printf(adapter->pdev, "Unmapped RX DMA tag associations\n"); rc = ena_free_tx_dma_tag(adapter); if (unlikely(rc != 0)) device_printf(adapter->pdev, "Unmapped TX DMA tag associations\n"); #endif /* Reset the device only if the device is running. */ if (adapter->running) ena_com_dev_reset(ena_dev, adapter->reset_reason); ena_com_delete_host_info(ena_dev); ena_free_irqs(adapter); ena_com_abort_admin_commands(ena_dev); ena_com_wait_for_abort_completion(ena_dev); ena_com_admin_destroy(ena_dev); ena_com_mmio_reg_read_request_destroy(ena_dev); ena_free_pci_resources(adapter); mutex_destroy(&adapter->global_mtx); rw_destroy(&adapter->ioctl_sx); if (ena_dev->bus != NULL) free(ena_dev->bus, M_DEVBUF); if (ena_dev != NULL) free(ena_dev, M_DEVBUF); return 0; } /****************************************************************************** ******************************** AENQ Handlers ******************************* *****************************************************************************/ /** * ena_update_on_link_change: * Notify the network interface about the change in link status **/ static void ena_update_on_link_change(void *adapter_data, struct ena_admin_aenq_entry *aenq_e) { struct ena_adapter *adapter = (struct ena_adapter *)adapter_data; struct ena_admin_aenq_link_change_desc *aenq_desc; int status; struct ifnet *ifp; aenq_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e; ifp = adapter->ifp; status = aenq_desc->flags & ENA_ADMIN_AENQ_LINK_CHANGE_DESC_LINK_STATUS_MASK; if (status != 0) { device_printf(adapter->pdev, "link is UP\n"); if_link_state_change(ifp, LINK_STATE_UP); } else if (status == 0) { device_printf(adapter->pdev, "link is DOWN\n"); if_link_state_change(ifp, LINK_STATE_DOWN); } else { device_printf(adapter->pdev, "invalid value recvd\n"); BUG(); } adapter->link_status = status; } /** * This handler will called for unknown event group or unimplemented handlers **/ static void unimplemented_aenq_handler(void *data, struct ena_admin_aenq_entry *aenq_e) { return; } static struct ena_aenq_handlers aenq_handlers = { .handlers = { [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change, [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive_wd, }, .unimplemented_handler = unimplemented_aenq_handler }; #ifdef __FreeBSD__ /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ static device_method_t ena_methods[] = { /* Device interface */ DEVMETHOD(device_probe, ena_probe), DEVMETHOD(device_attach, ena_attach), DEVMETHOD(device_detach, ena_detach), DEVMETHOD_END }; static driver_t ena_driver = { "ena", ena_methods, sizeof(struct ena_adapter), }; devclass_t ena_devclass; DRIVER_MODULE(ena, pci, ena_driver, ena_devclass, 0, 0); MODULE_DEPEND(ena, pci, 1, 1, 1); MODULE_DEPEND(ena, ether, 1, 1, 1); /*********************************************************************/ #endif /* __FreeBSD__ */ #ifdef __NetBSD__ CFATTACH_DECL_NEW(ena, sizeof(struct ena_adapter), ena_probe, ena_attach, ena_detach, NULL); #endif /* __NetBSD */