/* $NetBSD: if_ti.c,v 1.112.2.1 2020/07/15 17:16:59 martin Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * FreeBSD Id: if_ti.c,v 1.15 1999/08/14 15:45:03 wpaul Exp */ /* * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD. * Manuals, sample driver and firmware source kits are available * from http://www.alteon.com/support/openkits. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Alteon Networks Tigon chip contains an embedded R4000 CPU, * gigabit MAC, dual DMA channels and a PCI interface unit. NICs * using the Tigon may have anywhere from 512K to 2MB of SRAM. The * Tigon supports hardware IP, TCP and UCP checksumming, multicast * filtering and jumbo (9014 byte) frames. The hardware is largely * controlled by firmware, which must be loaded into the NIC during * initialization. * * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware * revision, which supports new features such as extended commands, * extended jumbo receive ring desciptors and a mini receive ring. * * Alteon Networks is to be commended for releasing such a vast amount * of development material for the Tigon NIC without requiring an NDA * (although they really should have done it a long time ago). With * any luck, the other vendors will finally wise up and follow Alteon's * stellar example. * * The firmware for the Tigon 1 and 2 NICs is compiled directly into * this driver by #including it as a C header file. This bloats the * driver somewhat, but it's the easiest method considering that the * driver code and firmware code need to be kept in sync. The source * for the firmware is not provided with the FreeBSD distribution since * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3. * * The following people deserve special thanks: * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board * for testing * - Raymond Lee of Netgear, for providing a pair of Netgear * GA620 Tigon 2 boards for testing * - Ulf Zimmermann, for bringing the GA620 to my attention and * convincing me to write this driver. * - Andrew Gallatin for providing FreeBSD/Alpha support. */ #include __KERNEL_RCSID(0, "$NetBSD: if_ti.c,v 1.112.2.1 2020/07/15 17:16:59 martin Exp $"); #include "opt_inet.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #endif #include #include #include #include #include #include #include /* * Various supported device vendors/types and their names. */ static const struct ti_type ti_devs[] = { { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC, "Alteon AceNIC 1000BASE-SX Ethernet" }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_ACENIC_COPPER, "Alteon AceNIC 1000BASE-T Ethernet" }, { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C985, "3Com 3c985-SX Gigabit Ethernet" }, { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620, "Netgear GA620 1000BASE-SX Ethernet" }, { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_GA620T, "Netgear GA620 1000BASE-T Ethernet" }, { PCI_VENDOR_SGI, PCI_PRODUCT_SGI_TIGON, "Silicon Graphics Gigabit Ethernet" }, { PCI_VENDOR_DEC, PCI_PRODUCT_DEC_PN9000SX, "Farallon PN9000SX Gigabit Ethernet" }, { 0, 0, NULL } }; static const struct ti_type *ti_type_match(struct pci_attach_args *); static int ti_probe(device_t, cfdata_t, void *); static void ti_attach(device_t, device_t, void *); static bool ti_shutdown(device_t, int); static void ti_txeof_tigon1(struct ti_softc *); static void ti_txeof_tigon2(struct ti_softc *); static void ti_rxeof(struct ti_softc *); static void ti_stats_update(struct ti_softc *); static int ti_encap_tigon1(struct ti_softc *, struct mbuf *, uint32_t *); static int ti_encap_tigon2(struct ti_softc *, struct mbuf *, uint32_t *); static int ti_intr(void *); static void ti_start(struct ifnet *); static int ti_ioctl(struct ifnet *, u_long, void *); static void ti_init(void *); static void ti_init2(struct ti_softc *); static void ti_stop(struct ti_softc *); static void ti_watchdog(struct ifnet *); static int ti_ifmedia_upd(struct ifnet *); static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *); static uint32_t ti_eeprom_putbyte(struct ti_softc *, int); static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *); static int ti_read_eeprom(struct ti_softc *, void *, int, int); static void ti_add_mcast(struct ti_softc *, struct ether_addr *); static void ti_del_mcast(struct ti_softc *, struct ether_addr *); static void ti_setmulti(struct ti_softc *); static void ti_mem(struct ti_softc *, uint32_t, uint32_t, const void *); static void ti_loadfw(struct ti_softc *); static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *); static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *, void *, int); static void ti_handle_events(struct ti_softc *); static int ti_alloc_jumbo_mem(struct ti_softc *); static void *ti_jalloc(struct ti_softc *); static void ti_jfree(struct mbuf *, void *, size_t, void *); static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *, bus_dmamap_t); static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *, bus_dmamap_t); static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *); static int ti_init_rx_ring_std(struct ti_softc *); static void ti_free_rx_ring_std(struct ti_softc *); static int ti_init_rx_ring_jumbo(struct ti_softc *); static void ti_free_rx_ring_jumbo(struct ti_softc *); static int ti_init_rx_ring_mini(struct ti_softc *); static void ti_free_rx_ring_mini(struct ti_softc *); static void ti_free_tx_ring(struct ti_softc *); static int ti_init_tx_ring(struct ti_softc *); static int ti_64bitslot_war(struct ti_softc *); static int ti_chipinit(struct ti_softc *); static int ti_gibinit(struct ti_softc *); static int ti_ether_ioctl(struct ifnet *, u_long, void *); CFATTACH_DECL_NEW(ti, sizeof(struct ti_softc), ti_probe, ti_attach, NULL, NULL); /* * Send an instruction or address to the EEPROM, check for ACK. */ static uint32_t ti_eeprom_putbyte(struct ti_softc *sc, int byte) { int i, ack = 0; /* * Make sure we're in TX mode. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Feed in each bit and strobe the clock. */ for (i = 0x80; i; i >>= 1) { if (byte & i) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } else { TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT); } DELAY(1); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); } /* * Turn off TX mode. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); /* * Check for ack. */ TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); return (ack); } /* * Read a byte of data stored in the EEPROM at address 'addr.' * We have to send two address bytes since the EEPROM can hold * more than 256 bytes of data. */ static uint8_t ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest) { int i; uint8_t byte = 0; EEPROM_START(); /* * Send write control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { printf("%s: failed to send write command, status: %x\n", device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Send first byte of address of byte we want to read. */ if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) { printf("%s: failed to send address, status: %x\n", device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Send second byte address of byte we want to read. */ if (ti_eeprom_putbyte(sc, addr & 0xFF)) { printf("%s: failed to send address, status: %x\n", device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } EEPROM_STOP(); EEPROM_START(); /* * Send read control code to EEPROM. */ if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) { printf("%s: failed to send read command, status: %x\n", device_xname(sc->sc_dev), CSR_READ_4(sc, TI_MISC_LOCAL_CTL)); return (1); } /* * Start reading bits from EEPROM. */ TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN); for (i = 0x80; i; i >>= 1) { TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN) byte |= i; TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK); DELAY(1); } EEPROM_STOP(); /* * No ACK generated for read, so just return byte. */ *dest = byte; return (0); } /* * Read a sequence of bytes from the EEPROM. */ static int ti_read_eeprom(struct ti_softc *sc, void *destv, int off, int cnt) { char *dest = destv; int err = 0, i; uint8_t byte = 0; for (i = 0; i < cnt; i++) { err = ti_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * NIC memory access function. Can be used to either clear a section * of NIC local memory or (if tbuf is non-NULL) copy data into it. */ static void ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, const void *xbuf) { int segptr, segsize, cnt; const void *ptr; segptr = addr; cnt = len; ptr = xbuf; while (cnt) { if (cnt < TI_WINLEN) segsize = cnt; else segsize = TI_WINLEN - (segptr % TI_WINLEN); CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1))); if (xbuf == NULL) { bus_space_set_region_4(sc->ti_btag, sc->ti_bhandle, TI_WINDOW + (segptr & (TI_WINLEN - 1)), 0, segsize / 4); } else { #ifdef __BUS_SPACE_HAS_STREAM_METHODS bus_space_write_region_stream_4(sc->ti_btag, sc->ti_bhandle, TI_WINDOW + (segptr & (TI_WINLEN - 1)), (const uint32_t *)ptr, segsize / 4); #else bus_space_write_region_4(sc->ti_btag, sc->ti_bhandle, TI_WINDOW + (segptr & (TI_WINLEN - 1)), (const uint32_t *)ptr, segsize / 4); #endif ptr = (const char *)ptr + segsize; } segptr += segsize; cnt -= segsize; } return; } /* * Load firmware image into the NIC. Check that the firmware revision * is acceptable and see if we want the firmware for the Tigon 1 or * Tigon 2. */ static void ti_loadfw(struct ti_softc *sc) { switch (sc->ti_hwrev) { case TI_HWREV_TIGON: if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR || tigonFwReleaseMinor != TI_FIRMWARE_MINOR || tigonFwReleaseFix != TI_FIRMWARE_FIX) { printf("%s: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev), TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigonFwReleaseMajor, tigonFwReleaseMinor, tigonFwReleaseFix); return; } ti_mem(sc, tigonFwTextAddr, tigonFwTextLen, tigonFwText); ti_mem(sc, tigonFwDataAddr, tigonFwDataLen, tigonFwData); ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen, tigonFwRodata); ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL); ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr); break; case TI_HWREV_TIGON_II: if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR || tigon2FwReleaseMinor != TI_FIRMWARE_MINOR || tigon2FwReleaseFix != TI_FIRMWARE_FIX) { printf("%s: firmware revision mismatch; want " "%d.%d.%d, got %d.%d.%d\n", device_xname(sc->sc_dev), TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR, TI_FIRMWARE_FIX, tigon2FwReleaseMajor, tigon2FwReleaseMinor, tigon2FwReleaseFix); return; } ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen, tigon2FwText); ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen, tigon2FwData); ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen, tigon2FwRodata); ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL); ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL); CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr); break; default: printf("%s: can't load firmware: unknown hardware rev\n", device_xname(sc->sc_dev)); break; } return; } /* * Send the NIC a command via the command ring. */ static void ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd) { uint32_t index; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; } /* * Send the NIC an extended command. The 'len' parameter specifies the * number of command slots to include after the initial command. */ static void ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, void *argv, int len) { char *arg = argv; uint32_t index; int i; index = sc->ti_cmd_saved_prodidx; CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd)); TI_INC(index, TI_CMD_RING_CNT); for (i = 0; i < len; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(&arg[i * 4])); TI_INC(index, TI_CMD_RING_CNT); } CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index); sc->ti_cmd_saved_prodidx = index; } /* * Handle events that have triggered interrupts. */ static void ti_handle_events(struct ti_softc *sc) { struct ti_event_desc *e; while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) { e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx]; switch (TI_EVENT_EVENT(e)) { case TI_EV_LINKSTAT_CHANGED: sc->ti_linkstat = TI_EVENT_CODE(e); if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) printf("%s: 10/100 link up\n", device_xname(sc->sc_dev)); else if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) printf("%s: gigabit link up\n", device_xname(sc->sc_dev)); else if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) printf("%s: link down\n", device_xname(sc->sc_dev)); break; case TI_EV_ERROR: if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_INVAL_CMD) printf("%s: invalid command\n", device_xname(sc->sc_dev)); else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_UNIMP_CMD) printf("%s: unknown command\n", device_xname(sc->sc_dev)); else if (TI_EVENT_CODE(e) == TI_EV_CODE_ERR_BADCFG) printf("%s: bad config data\n", device_xname(sc->sc_dev)); break; case TI_EV_FIRMWARE_UP: ti_init2(sc); break; case TI_EV_STATS_UPDATED: ti_stats_update(sc); break; case TI_EV_RESET_JUMBO_RING: case TI_EV_MCAST_UPDATED: /* Who cares. */ break; default: printf("%s: unknown event: %d\n", device_xname(sc->sc_dev), TI_EVENT_EVENT(e)); break; } /* Advance the consumer index. */ TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT); CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx); } return; } /* * Memory management for the jumbo receive ring is a pain in the * butt. We need to allocate at least 9018 bytes of space per frame, * _and_ it has to be contiguous (unless you use the extended * jumbo descriptor format). Using malloc() all the time won't * work: malloc() allocates memory in powers of two, which means we * would end up wasting a considerable amount of space by allocating * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have * to do our own memory management. * * The driver needs to allocate a contiguous chunk of memory at boot * time. We then chop this up ourselves into 9K pieces and use them * as external mbuf storage. * * One issue here is how much memory to allocate. The jumbo ring has * 256 slots in it, but at 9K per slot than can consume over 2MB of * RAM. This is a bit much, especially considering we also need * RAM for the standard ring and mini ring (on the Tigon 2). To * save space, we only actually allocate enough memory for 64 slots * by default, which works out to between 500 and 600K. This can * be tuned by changing a #define in if_tireg.h. */ static int ti_alloc_jumbo_mem(struct ti_softc *sc) { char *ptr; int i; struct ti_jpool_entry *entry; bus_dma_segment_t dmaseg; int error, dmanseg; /* Grab a big chunk o' storage. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, TI_JMEM, PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "can't allocate jumbo buffer, error = %d\n", error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, TI_JMEM, (void **)&sc->ti_cdata.ti_jumbo_buf, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error_dev(sc->sc_dev, "can't map jumbo buffer, error = %d\n", error); return (error); } if ((error = bus_dmamap_create(sc->sc_dmat, TI_JMEM, 1, TI_JMEM, 0, BUS_DMA_NOWAIT, &sc->jumbo_dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "can't create jumbo buffer DMA map, error = %d\n", error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, sc->jumbo_dmamap, sc->ti_cdata.ti_jumbo_buf, TI_JMEM, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "can't load jumbo buffer DMA map, error = %d\n", error); return (error); } sc->jumbo_dmaaddr = sc->jumbo_dmamap->dm_segs[0].ds_addr; SIMPLEQ_INIT(&sc->ti_jfree_listhead); SIMPLEQ_INIT(&sc->ti_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->ti_cdata.ti_jumbo_buf; for (i = 0; i < TI_JSLOTS; i++) { sc->ti_cdata.ti_jslots[i] = ptr; ptr += TI_JLEN; entry = malloc(sizeof(struct ti_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { free(sc->ti_cdata.ti_jumbo_buf, M_DEVBUF); sc->ti_cdata.ti_jumbo_buf = NULL; printf("%s: no memory for jumbo " "buffer queue!\n", device_xname(sc->sc_dev)); return (ENOBUFS); } entry->slot = i; SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); } return (0); } /* * Allocate a jumbo buffer. */ static void * ti_jalloc(struct ti_softc *sc) { struct ti_jpool_entry *entry; entry = SIMPLEQ_FIRST(&sc->ti_jfree_listhead); if (entry == NULL) { printf("%s: no free jumbo buffers\n", device_xname(sc->sc_dev)); return (NULL); } SIMPLEQ_REMOVE_HEAD(&sc->ti_jfree_listhead, jpool_entries); SIMPLEQ_INSERT_HEAD(&sc->ti_jinuse_listhead, entry, jpool_entries); return (sc->ti_cdata.ti_jslots[entry->slot]); } /* * Release a jumbo buffer. */ static void ti_jfree(struct mbuf *m, void *tbuf, size_t size, void *arg) { struct ti_softc *sc; int i, s; struct ti_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = (struct ti_softc *)arg; if (sc == NULL) panic("ti_jfree: didn't get softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((char *)tbuf - (char *)sc->ti_cdata.ti_jumbo_buf) / TI_JLEN; if ((i < 0) || (i >= TI_JSLOTS)) panic("ti_jfree: asked to free buffer that we don't manage!"); s = splvm(); entry = SIMPLEQ_FIRST(&sc->ti_jinuse_listhead); if (entry == NULL) panic("ti_jfree: buffer not in use!"); entry->slot = i; SIMPLEQ_REMOVE_HEAD(&sc->ti_jinuse_listhead, jpool_entries); SIMPLEQ_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jpool_entries); if (__predict_true(m != NULL)) pool_cache_put(mb_cache, m); splx(s); } /* * Initialize a standard receive ring descriptor. */ static int ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap) { struct mbuf *m_new = NULL; struct ti_rx_desc *r; int error; if (dmamap == NULL) { /* if (m) panic() */ if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n", error); return (ENOMEM); } } sc->std_dmamap[i] = dmamap; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { aprint_error_dev(sc->sc_dev, "mbuf allocation failed -- packet dropped!\n"); return (ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { aprint_error_dev(sc->sc_dev, "cluster allocation failed -- packet dropped!\n"); m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_adj(m_new, ETHER_ALIGN); if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, mtod(m_new, void *), m_new->m_len, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n", error); m_freem(m_new); return (ENOMEM); } } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; m_adj(m_new, ETHER_ALIGN); /* reuse the dmamap */ } sc->ti_cdata.ti_rx_std_chain[i] = m_new; r = &sc->ti_rdata->ti_rx_std_ring[i]; TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = 0; if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) r->ti_flags |= TI_BDFLAG_IP_CKSUM; if (sc->ethercom.ec_if.if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; r->ti_len = m_new->m_len; /* == ds_len */ r->ti_idx = i; return (0); } /* * Initialize a mini receive ring descriptor. This only applies to * the Tigon 2. */ static int ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap) { struct mbuf *m_new = NULL; struct ti_rx_desc *r; int error; if (dmamap == NULL) { /* if (m) panic() */ if ((error = bus_dmamap_create(sc->sc_dmat, MHLEN, 1, MHLEN, 0, BUS_DMA_NOWAIT, &dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "can't create recv map, error = %d\n", error); return (ENOMEM); } } sc->mini_dmamap[i] = dmamap; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { aprint_error_dev(sc->sc_dev, "mbuf allocation failed -- packet dropped!\n"); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MHLEN; m_adj(m_new, ETHER_ALIGN); if ((error = bus_dmamap_load(sc->sc_dmat, dmamap, mtod(m_new, void *), m_new->m_len, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(sc->sc_dev, "can't load recv map, error = %d\n", error); m_freem(m_new); return (ENOMEM); } } else { m_new = m; m_new->m_data = m_new->m_pktdat; m_new->m_len = m_new->m_pkthdr.len = MHLEN; m_adj(m_new, ETHER_ALIGN); /* reuse the dmamap */ } r = &sc->ti_rdata->ti_rx_mini_ring[i]; sc->ti_cdata.ti_rx_mini_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = dmamap->dm_segs[0].ds_addr; r->ti_type = TI_BDTYPE_RECV_BD; r->ti_flags = TI_BDFLAG_MINI_RING; if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) r->ti_flags |= TI_BDFLAG_IP_CKSUM; if (sc->ethercom.ec_if.if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; r->ti_len = m_new->m_len; /* == ds_len */ r->ti_idx = i; return (0); } /* * Initialize a jumbo receive ring descriptor. This allocates * a jumbo buffer from the pool managed internally by the driver. */ static int ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m) { struct mbuf *m_new = NULL; struct ti_rx_desc *r; if (m == NULL) { void * tbuf = NULL; /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { aprint_error_dev(sc->sc_dev, "mbuf allocation failed -- packet dropped!\n"); return (ENOBUFS); } /* Allocate the jumbo buffer */ tbuf = ti_jalloc(sc); if (tbuf == NULL) { m_freem(m_new); aprint_error_dev(sc->sc_dev, "jumbo allocation failed -- packet dropped!\n"); return (ENOBUFS); } /* Attach the buffer to the mbuf. */ MEXTADD(m_new, tbuf, ETHER_MAX_LEN_JUMBO, M_DEVBUF, ti_jfree, sc); m_new->m_flags |= M_EXT_RW; m_new->m_len = m_new->m_pkthdr.len = ETHER_MAX_LEN_JUMBO; } else { m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = ETHER_MAX_LEN_JUMBO; } m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->ti_rdata->ti_rx_jumbo_ring[i]; sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new; TI_HOSTADDR(r->ti_addr) = sc->jumbo_dmaaddr + (mtod(m_new, char *) - (char *)sc->ti_cdata.ti_jumbo_buf); r->ti_type = TI_BDTYPE_RECV_JUMBO_BD; r->ti_flags = TI_BDFLAG_JUMBO_RING; if (sc->ethercom.ec_if.if_capenable & IFCAP_CSUM_IPv4_Rx) r->ti_flags |= TI_BDFLAG_IP_CKSUM; if (sc->ethercom.ec_if.if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM; r->ti_len = m_new->m_len; r->ti_idx = i; return (0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ static int ti_init_rx_ring_std(struct ti_softc *sc) { int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_SSLOTS; i++) { if (ti_newbuf_std(sc, i, NULL, 0) == ENOBUFS) return (ENOBUFS); } TI_UPDATE_STDPROD(sc, i - 1); sc->ti_std = i - 1; return (0); } static void ti_free_rx_ring_std(struct ti_softc *sc) { int i; for (i = 0; i < TI_STD_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_std_chain[i]); sc->ti_cdata.ti_rx_std_chain[i] = NULL; /* if (sc->std_dmamap[i] == 0) panic() */ bus_dmamap_destroy(sc->sc_dmat, sc->std_dmamap[i]); sc->std_dmamap[i] = 0; } memset((char *)&sc->ti_rdata->ti_rx_std_ring[i], 0, sizeof(struct ti_rx_desc)); } return; } static int ti_init_rx_ring_jumbo(struct ti_softc *sc) { int i; struct ti_cmd_desc cmd; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } TI_UPDATE_JUMBOPROD(sc, i - 1); sc->ti_jumbo = i - 1; return (0); } static void ti_free_rx_ring_jumbo(struct ti_softc *sc) { int i; for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]); sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL; } memset((char *)&sc->ti_rdata->ti_rx_jumbo_ring[i], 0, sizeof(struct ti_rx_desc)); } return; } static int ti_init_rx_ring_mini(struct ti_softc *sc) { int i; for (i = 0; i < TI_MSLOTS; i++) { if (ti_newbuf_mini(sc, i, NULL, 0) == ENOBUFS) return (ENOBUFS); } TI_UPDATE_MINIPROD(sc, i - 1); sc->ti_mini = i - 1; return (0); } static void ti_free_rx_ring_mini(struct ti_softc *sc) { int i; for (i = 0; i < TI_MINI_RX_RING_CNT; i++) { if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_rx_mini_chain[i]); sc->ti_cdata.ti_rx_mini_chain[i] = NULL; /* if (sc->mini_dmamap[i] == 0) panic() */ bus_dmamap_destroy(sc->sc_dmat, sc->mini_dmamap[i]); sc->mini_dmamap[i] = 0; } memset((char *)&sc->ti_rdata->ti_rx_mini_ring[i], 0, sizeof(struct ti_rx_desc)); } return; } static void ti_free_tx_ring(struct ti_softc *sc) { int i; struct txdmamap_pool_entry *dma; for (i = 0; i < TI_TX_RING_CNT; i++) { if (sc->ti_cdata.ti_tx_chain[i] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[i]); sc->ti_cdata.ti_tx_chain[i] = NULL; /* if (sc->txdma[i] == 0) panic() */ SIMPLEQ_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], link); sc->txdma[i] = 0; } memset((char *)&sc->ti_rdata->ti_tx_ring[i], 0, sizeof(struct ti_tx_desc)); } while ((dma = SIMPLEQ_FIRST(&sc->txdma_list))) { SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); bus_dmamap_destroy(sc->sc_dmat, dma->dmamap); free(dma, M_DEVBUF); } return; } static int ti_init_tx_ring(struct ti_softc *sc) { int i, error; bus_dmamap_t dmamap; struct txdmamap_pool_entry *dma; sc->ti_txcnt = 0; sc->ti_tx_saved_considx = 0; CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0); SIMPLEQ_INIT(&sc->txdma_list); for (i = 0; i < TI_RSLOTS; i++) { /* I've seen mbufs with 30 fragments. */ if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO, 40, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT, &dmamap)) != 0) { aprint_error_dev(sc->sc_dev, "can't create tx map, error = %d\n", error); return (ENOMEM); } dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); if (!dma) { aprint_error_dev(sc->sc_dev, "can't alloc txdmamap_pool_entry\n"); bus_dmamap_destroy(sc->sc_dmat, dmamap); return (ENOMEM); } dma->dmamap = dmamap; SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); } return (0); } /* * The Tigon 2 firmware has a new way to add/delete multicast addresses, * but we have to support the old way too so that Tigon 1 cards will * work. */ static void ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr) { struct ti_cmd_desc cmd; uint16_t *m; uint32_t ext[2] = {0, 0}; m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */ switch (sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (void *)&ext, 2); break; default: printf("%s: unknown hwrev\n", device_xname(sc->sc_dev)); break; } return; } static void ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr) { struct ti_cmd_desc cmd; uint16_t *m; uint32_t ext[2] = {0, 0}; m = (uint16_t *)&addr->ether_addr_octet[0]; /* XXX */ switch (sc->ti_hwrev) { case TI_HWREV_TIGON: CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0])); CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2])); TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0); break; case TI_HWREV_TIGON_II: ext[0] = htons(m[0]); ext[1] = (htons(m[1]) << 16) | htons(m[2]); TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (void *)&ext, 2); break; default: printf("%s: unknown hwrev\n", device_xname(sc->sc_dev)); break; } return; } /* * Configure the Tigon's multicast address filter. * * The actual multicast table management is a bit of a pain, thanks to * slight brain damage on the part of both Alteon and us. With our * multicast code, we are only alerted when the multicast address table * changes and at that point we only have the current list of addresses: * we only know the current state, not the previous state, so we don't * actually know what addresses were removed or added. The firmware has * state, but we can't get our grubby mits on it, and there is no 'delete * all multicast addresses' command. Hence, we have to maintain our own * state so we know what addresses have been programmed into the NIC at * any given time. */ static void ti_setmulti(struct ti_softc *sc) { struct ethercom *ec = &sc->ethercom; struct ifnet *ifp = &ec->ec_if; struct ti_cmd_desc cmd; struct ti_mc_entry *mc; uint32_t intrs; struct ether_multi *enm; struct ether_multistep step; /* Disable interrupts. */ intrs = CSR_READ_4(sc, TI_MB_HOSTINTR); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* First, zot all the existing filters. */ while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { ti_del_mcast(sc, &mc->mc_addr); SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); free(mc, M_DEVBUF); } /* * Remember all multicast addresses so that we can delete them * later. Punt if there is a range of addresses or memory shortage. */ ETHER_LOCK(ec); ETHER_FIRST_MULTI(step, ec, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { ETHER_UNLOCK(ec); goto allmulti; } if ((mc = malloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_NOWAIT)) == NULL) { ETHER_UNLOCK(ec); goto allmulti; } memcpy(&mc->mc_addr, enm->enm_addrlo, ETHER_ADDR_LEN); SIMPLEQ_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries); ETHER_NEXT_MULTI(step, enm); } ETHER_UNLOCK(ec); /* Accept only programmed multicast addresses */ ifp->if_flags &= ~IFF_ALLMULTI; TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0); /* Now program new ones. */ SIMPLEQ_FOREACH(mc, &sc->ti_mc_listhead, mc_entries) ti_add_mcast(sc, &mc->mc_addr); /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); return; allmulti: /* No need to keep individual multicast addresses */ while ((mc = SIMPLEQ_FIRST(&sc->ti_mc_listhead)) != NULL) { SIMPLEQ_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries); free(mc, M_DEVBUF); } /* Accept all multicast addresses */ ifp->if_flags |= IFF_ALLMULTI; TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0); /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs); } /* * Check to see if the BIOS has configured us for a 64 bit slot when * we aren't actually in one. If we detect this condition, we can work * around it on the Tigon 2 by setting a bit in the PCI state register, * but for the Tigon 1 we must give up and abort the interface attach. */ static int ti_64bitslot_war(struct ti_softc *sc) { if (!(CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS)) { CSR_WRITE_4(sc, 0x600, 0); CSR_WRITE_4(sc, 0x604, 0); CSR_WRITE_4(sc, 0x600, 0x5555AAAA); if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) { if (sc->ti_hwrev == TI_HWREV_TIGON) return (EINVAL); else { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS); return (0); } } } return (0); } /* * Do endian, PCI and DMA initialization. Also check the on-board ROM * self-test results. */ static int ti_chipinit(struct ti_softc *sc) { uint32_t cacheline; uint32_t pci_writemax = 0; uint32_t rev; /* Initialize link to down state. */ sc->ti_linkstat = TI_EV_CODE_LINK_DOWN; /* Set endianness before we access any non-PCI registers. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24)); #else CSR_WRITE_4(sc, TI_MISC_HOST_CTL, TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24)); #endif /* Check the ROM failed bit to see if self-tests passed. */ if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) { printf("%s: board self-diagnostics failed!\n", device_xname(sc->sc_dev)); return (ENODEV); } /* Halt the CPU. */ TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT); /* Figure out the hardware revision. */ rev = CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK; switch (rev) { case TI_REV_TIGON_I: sc->ti_hwrev = TI_HWREV_TIGON; break; case TI_REV_TIGON_II: sc->ti_hwrev = TI_HWREV_TIGON_II; break; default: printf("%s: unsupported chip revision 0x%x\n", device_xname(sc->sc_dev), rev); return (ENODEV); } /* Do special setup for Tigon 2. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT); TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_256K); TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS); } /* Set up the PCI state register. */ CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD | TI_PCI_WRITE_CMD); if (sc->ti_hwrev == TI_HWREV_TIGON_II) { TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT); } /* Clear the read/write max DMA parameters. */ TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA | TI_PCISTATE_READ_MAXDMA)); /* Get cache line size. */ cacheline = PCI_CACHELINE(CSR_READ_4(sc, PCI_BHLC_REG)); /* * If the system has set enabled the PCI memory write * and invalidate command in the command register, set * the write max parameter accordingly. This is necessary * to use MWI with the Tigon 2. */ if (CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) & PCI_COMMAND_INVALIDATE_ENABLE) { switch (cacheline) { case 1: case 4: case 8: case 16: case 32: case 64: break; default: /* Disable PCI memory write and invalidate. */ if (bootverbose) printf("%s: cache line size %d not " "supported; disabling PCI MWI\n", device_xname(sc->sc_dev), cacheline); CSR_WRITE_4(sc, PCI_COMMAND_STATUS_REG, CSR_READ_4(sc, PCI_COMMAND_STATUS_REG) & ~PCI_COMMAND_INVALIDATE_ENABLE); break; } } #ifdef __brokenalpha__ /* * From the Alteon sample driver: * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ TI_SETBIT(sc, TI_PCI_STATE, pci_writemax | TI_PCI_READMAX_1024); #else TI_SETBIT(sc, TI_PCI_STATE, pci_writemax); #endif /* This sets the min dma param all the way up (0xff). */ TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA); /* Configure DMA variables. */ #if BYTE_ORDER == BIG_ENDIAN CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD | TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB | TI_OPMODE_DONT_FRAG_JUMBO); #else CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD | TI_OPMODE_DONT_FRAG_JUMBO | TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB); #endif /* * Only allow 1 DMA channel to be active at a time. * I don't think this is a good idea, but without it * the firmware racks up lots of nicDmaReadRingFull * errors. * Incompatible with hardware assisted checksums. */ if ((sc->ethercom.ec_if.if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx | IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx)) == 0) TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE); /* Recommended settings from Tigon manual. */ CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W); CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W); if (ti_64bitslot_war(sc)) { printf("%s: bios thinks we're in a 64 bit slot, " "but we aren't", device_xname(sc->sc_dev)); return (EINVAL); } return (0); } /* * Initialize the general information block and firmware, and * start the CPU(s) running. */ static int ti_gibinit(struct ti_softc *sc) { struct ti_rcb *rcb; int i; struct ifnet *ifp; ifp = &sc->ethercom.ec_if; /* Disable interrupts for now. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* Tell the chip where to find the general information block. */ CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0); CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, TI_CDGIBADDR(sc)); /* Load the firmware into SRAM. */ ti_loadfw(sc); /* Set up the contents of the general info and ring control blocks. */ /* Set up the event ring and producer pointer. */ rcb = &sc->ti_rdata->ti_info.ti_ev_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDEVENTADDR(sc, 0); rcb->ti_flags = 0; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) = TI_CDEVPRODADDR(sc); sc->ti_ev_prodidx.ti_idx = 0; CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0); sc->ti_ev_saved_considx = 0; /* Set up the command ring and producer mailbox. */ rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING); rcb->ti_flags = 0; rcb->ti_max_len = 0; for (i = 0; i < TI_CMD_RING_CNT; i++) { CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0); } CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0); CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0); sc->ti_cmd_saved_prodidx = 0; /* * Assign the address of the stats refresh buffer. * We re-use the current stats buffer for this to * conserve memory. */ TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) = TI_CDSTATSADDR(sc); /* Set up the standard receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXSTDADDR(sc, 0); rcb->ti_max_len = ETHER_MAX_LEN; rcb->ti_flags = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; if (VLAN_ATTACHED(&sc->ethercom)) rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* Set up the jumbo receive ring. */ rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXJUMBOADDR(sc, 0); rcb->ti_max_len = ETHER_MAX_LEN_JUMBO; rcb->ti_flags = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; if (VLAN_ATTACHED(&sc->ethercom)) rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* * Set up the mini ring. Only activated on the * Tigon 2 but the slot in the config block is * still there on the Tigon 1. */ rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXMINIADDR(sc, 0); rcb->ti_max_len = MHLEN - ETHER_ALIGN; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED; else rcb->ti_flags = 0; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM; if (VLAN_ATTACHED(&sc->ethercom)) rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; /* * Set up the receive return ring. */ rcb = &sc->ti_rdata->ti_info.ti_return_rcb; TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDRXRTNADDR(sc, 0); rcb->ti_flags = 0; rcb->ti_max_len = TI_RETURN_RING_CNT; TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) = TI_CDRTNPRODADDR(sc); /* * Set up the tx ring. Note: for the Tigon 2, we have the option * of putting the transmit ring in the host's address space and * letting the chip DMA it instead of leaving the ring in the NIC's * memory and accessing it through the shared memory region. We * do this for the Tigon 2, but it doesn't work on the Tigon 1, * so we have to revert to the shared memory scheme if we detect * a Tigon 1 chip. */ CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); if (sc->ti_hwrev == TI_HWREV_TIGON) { sc->ti_tx_ring_nic = (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW); } memset((char *)sc->ti_rdata->ti_tx_ring, 0, TI_TX_RING_CNT * sizeof(struct ti_tx_desc)); rcb = &sc->ti_rdata->ti_info.ti_tx_rcb; if (sc->ti_hwrev == TI_HWREV_TIGON) rcb->ti_flags = 0; else rcb->ti_flags = TI_RCB_FLAG_HOST_RING; if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) rcb->ti_flags |= TI_RCB_FLAG_IP_CKSUM; /* * When we get the packet, there is a pseudo-header seed already * in the th_sum or uh_sum field. Make sure the firmware doesn't * compute the pseudo-header checksum again! */ if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx)) rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM; if (VLAN_ATTACHED(&sc->ethercom)) rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST; rcb->ti_max_len = TI_TX_RING_CNT; if (sc->ti_hwrev == TI_HWREV_TIGON) TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE; else TI_HOSTADDR(rcb->ti_hostaddr) = TI_CDTXADDR(sc, 0); TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) = TI_CDTXCONSADDR(sc); /* * We're done frobbing the General Information Block. Sync * it. Note we take care of the first stats sync here, as * well. */ TI_CDGIBSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Set up tuneables */ if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN) || (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU)) CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, (sc->ti_rx_coal_ticks / 10)); else CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks); CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks); CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds); CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio); /* Turn interrupts on. */ CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0); CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); /* Start CPU. */ TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT | TI_CPUSTATE_STEP)); return (0); } /* * look for id in the device list, returning the first match */ static const struct ti_type * ti_type_match(struct pci_attach_args *pa) { const struct ti_type *t; t = ti_devs; while (t->ti_name != NULL) { if ((PCI_VENDOR(pa->pa_id) == t->ti_vid) && (PCI_PRODUCT(pa->pa_id) == t->ti_did)) { return (t); } t++; } return (NULL); } /* * Probe for a Tigon chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. */ static int ti_probe(device_t parent, cfdata_t match, void *aux) { struct pci_attach_args *pa = aux; const struct ti_type *t; t = ti_type_match(pa); return ((t == NULL) ? 0 : 1); } static void ti_attach(device_t parent, device_t self, void *aux) { uint32_t command; struct ifnet *ifp; struct ti_softc *sc; uint8_t eaddr[ETHER_ADDR_LEN]; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_dma_segment_t dmaseg; int error, dmanseg, nolinear; const struct ti_type *t; char intrbuf[PCI_INTRSTR_LEN]; t = ti_type_match(pa); if (t == NULL) { aprint_error("ti_attach: were did the card go ?\n"); return; } aprint_normal(": %s (rev. 0x%02x)\n", t->ti_name, PCI_REVISION(pa->pa_class)); sc = device_private(self); sc->sc_dev = self; /* * Map control/status registers. */ nolinear = 0; if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, BUS_SPACE_MAP_LINEAR , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) { nolinear = 1; if (pci_mapreg_map(pa, 0x10, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0 , &sc->ti_btag, &sc->ti_bhandle, NULL, NULL)) { aprint_error_dev(self, "can't map memory space\n"); return; } } if (nolinear == 0) sc->ti_vhandle = bus_space_vaddr(sc->ti_btag, sc->ti_bhandle); else sc->ti_vhandle = NULL; command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, ti_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "couldn't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); if (ti_chipinit(sc)) { aprint_error_dev(self, "chip initialization failed\n"); goto fail2; } /* * Deal with some chip diffrences. */ switch (sc->ti_hwrev) { case TI_HWREV_TIGON: sc->sc_tx_encap = ti_encap_tigon1; sc->sc_tx_eof = ti_txeof_tigon1; if (nolinear == 1) aprint_error_dev(self, "memory space not mapped linear\n"); break; case TI_HWREV_TIGON_II: sc->sc_tx_encap = ti_encap_tigon2; sc->sc_tx_eof = ti_txeof_tigon2; break; default: aprint_error_dev(self, "Unknown chip version: %d\n", sc->ti_hwrev); goto fail2; } /* Zero out the NIC's on-board SRAM. */ ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); /* Init again -- zeroing memory may have clobbered some registers. */ if (ti_chipinit(sc)) { aprint_error_dev(self, "chip initialization failed\n"); goto fail2; } /* * Get station address from the EEPROM. Note: the manual states * that the MAC address is at offset 0x8c, however the data is * stored as two longwords (since that's how it's loaded into * the NIC). This means the MAC address is actually preceded * by two zero bytes. We need to skip over those. */ if (ti_read_eeprom(sc, (void *)&eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) { aprint_error_dev(self, "failed to read station address\n"); goto fail2; } /* * A Tigon chip was detected. Inform the world. */ aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr)); sc->sc_dmat = pa->pa_dmat; /* Allocate the general information block and ring buffers. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct ti_ring_data), PAGE_SIZE, 0, &dmaseg, 1, &dmanseg, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(self, "can't allocate ring buffer, error = %d\n", error); goto fail2; } if ((error = bus_dmamem_map(sc->sc_dmat, &dmaseg, dmanseg, sizeof(struct ti_ring_data), (void **)&sc->ti_rdata, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error_dev(self, "can't map ring buffer, error = %d\n", error); goto fail2; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct ti_ring_data), 1, sizeof(struct ti_ring_data), 0, BUS_DMA_NOWAIT, &sc->info_dmamap)) != 0) { aprint_error_dev(self, "can't create ring buffer DMA map, error = %d\n", error); goto fail2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->info_dmamap, sc->ti_rdata, sizeof(struct ti_ring_data), NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(self, "can't load ring buffer DMA map, error = %d\n", error); goto fail2; } sc->info_dmaaddr = sc->info_dmamap->dm_segs[0].ds_addr; memset(sc->ti_rdata, 0, sizeof(struct ti_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (ti_alloc_jumbo_mem(sc)) { aprint_error_dev(self, "jumbo buffer allocation failed\n"); goto fail2; } SIMPLEQ_INIT(&sc->ti_mc_listhead); /* * We really need a better way to tell a 1000baseT card * from a 1000baseSX one, since in theory there could be * OEMed 1000baseT cards from lame vendors who aren't * clever enough to change the PCI ID. For the moment * though, the AceNIC is the only copper card available. */ if ((PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ALTEON && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ALTEON_ACENIC_COPPER) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NETGEAR && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NETGEAR_GA620T)) sc->ti_copper = 1; else sc->ti_copper = 0; /* Set default tuneable values. */ sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC; sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000; sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500; sc->ti_rx_max_coal_bds = 64; sc->ti_tx_max_coal_bds = 128; sc->ti_tx_buf_ratio = 21; /* Set up ifnet structure */ ifp = &sc->ethercom.ec_if; ifp->if_softc = sc; strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ti_ioctl; ifp->if_start = ti_start; ifp->if_watchdog = ti_watchdog; IFQ_SET_READY(&ifp->if_snd); #if 0 /* * XXX This is not really correct -- we don't necessarily * XXX want to queue up as many as we can transmit at the * XXX upper layer like that. Someone with a board should * XXX check to see how this affects performance. */ ifp->if_snd.ifq_maxlen = TI_TX_RING_CNT - 1; #endif /* * We can support 802.1Q VLAN-sized frames. */ sc->ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING; sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING; /* * We can do IPv4, TCPv4, and UDPv4 checksums in hardware. */ ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; /* Set up ifmedia support. */ sc->ethercom.ec_ifmedia = &sc->ifmedia; ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts); if (sc->ti_copper) { /* * Copper cards allow manual 10/100 mode selection, * but not manual 1000baseT mode selection. Why? * Because currently there's no way to specify the * master/slave setting through the firmware interface, * so Alteon decided to just bag it and handle it * via autonegotiation. */ ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); } else { /* Fiber cards don't support 10/100 modes. */ ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); } ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); if_deferred_start_init(ifp, NULL); ether_ifattach(ifp, eaddr); /* * Add shutdown hook so that DMA is disabled prior to reboot. Not * doing do could allow DMA to corrupt kernel memory during the * reboot before the driver initializes. */ if (pmf_device_register1(self, NULL, NULL, ti_shutdown)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); return; fail2: pci_intr_disestablish(pc, sc->sc_ih); return; } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle three possibilities here: * 1) the frame is from the mini receive ring (can only happen) * on Tigon 2 boards) * 2) the frame is from the jumbo receive ring * 3) the frame is from the standard receive ring */ static void ti_rxeof(struct ti_softc *sc) { struct ifnet *ifp; struct ti_cmd_desc cmd; ifp = &sc->ethercom.ec_if; while (sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) { struct ti_rx_desc *cur_rx; uint32_t rxidx; struct mbuf *m = NULL; struct ether_header *eh; bus_dmamap_t dmamap; cur_rx = &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx]; rxidx = cur_rx->ti_idx; TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT); if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) { TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT); m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx]; sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_jumbo(sc, sc->ti_jumbo, m); continue; } } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) { TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT); m = sc->ti_cdata.ti_rx_mini_chain[rxidx]; sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL; dmamap = sc->mini_dmamap[rxidx]; sc->mini_dmamap[rxidx] = 0; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); continue; } if (ti_newbuf_mini(sc, sc->ti_mini, NULL, dmamap) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_mini(sc, sc->ti_mini, m, dmamap); continue; } } else { TI_INC(sc->ti_std, TI_STD_RX_RING_CNT); m = sc->ti_cdata.ti_rx_std_chain[rxidx]; sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL; dmamap = sc->std_dmamap[rxidx]; sc->std_dmamap[rxidx] = 0; if (cur_rx->ti_flags & TI_BDFLAG_ERROR) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m, dmamap); continue; } if (ti_newbuf_std(sc, sc->ti_std, NULL, dmamap) == ENOBUFS) { ifp->if_ierrors++; ti_newbuf_std(sc, sc->ti_std, m, dmamap); continue; } } m->m_pkthdr.len = m->m_len = cur_rx->ti_len; m_set_rcvif(m, ifp); eh = mtod(m, struct ether_header *); switch (ntohs(eh->ether_type)) { #ifdef INET case ETHERTYPE_IP: { struct ip *ip = (struct ip *) (eh + 1); /* * Note the Tigon firmware does not invert * the checksum for us, hence the XOR. */ m->m_pkthdr.csum_flags |= M_CSUM_IPv4; if ((cur_rx->ti_ip_cksum ^ 0xffff) != 0) m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; /* * ntohs() the constant so the compiler can * optimize... * * XXX Figure out a sane way to deal with * fragmented packets. */ if ((ip->ip_off & htons(IP_MF | IP_OFFMASK)) == 0) { switch (ip->ip_p) { case IPPROTO_TCP: m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum; m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_DATA; break; case IPPROTO_UDP: m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum; m->m_pkthdr.csum_flags |= M_CSUM_UDPv4 | M_CSUM_DATA; break; default: /* Nothing */; } } break; } #endif default: /* Nothing. */ break; } if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) vlan_set_tag(m, cur_rx->ti_vlan_tag); if_percpuq_enqueue(ifp->if_percpuq, m); } /* Only necessary on the Tigon 1. */ if (sc->ti_hwrev == TI_HWREV_TIGON) CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, sc->ti_rx_saved_considx); TI_UPDATE_STDPROD(sc, sc->ti_std); TI_UPDATE_MINIPROD(sc, sc->ti_mini); TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo); } static void ti_txeof_tigon1(struct ti_softc *sc) { struct ti_tx_desc *cur_tx = NULL; struct ifnet *ifp; struct txdmamap_pool_entry *dma; ifp = &sc->ethercom.ec_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { uint32_t idx = 0; idx = sc->ti_tx_saved_considx; if (idx > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (idx > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (idx > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); cur_tx = &sc->ti_tx_ring_nic[idx % 128]; if (cur_tx->ti_flags & TI_BDFLAG_END) ifp->if_opackets++; if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[idx]); sc->ti_cdata.ti_tx_chain[idx] = NULL; dma = sc->txdma[idx]; KDASSERT(dma != NULL); bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0, dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, dma->dmamap); SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); sc->txdma[idx] = NULL; } sc->ti_txcnt--; TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); ifp->if_timer = 0; } if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } static void ti_txeof_tigon2(struct ti_softc *sc) { struct ti_tx_desc *cur_tx = NULL; struct ifnet *ifp; struct txdmamap_pool_entry *dma; int firstidx, cnt; ifp = &sc->ethercom.ec_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ firstidx = sc->ti_tx_saved_considx; cnt = 0; while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) { uint32_t idx = 0; idx = sc->ti_tx_saved_considx; cur_tx = &sc->ti_rdata->ti_tx_ring[idx]; if (cur_tx->ti_flags & TI_BDFLAG_END) ifp->if_opackets++; if (sc->ti_cdata.ti_tx_chain[idx] != NULL) { m_freem(sc->ti_cdata.ti_tx_chain[idx]); sc->ti_cdata.ti_tx_chain[idx] = NULL; dma = sc->txdma[idx]; KDASSERT(dma != NULL); bus_dmamap_sync(sc->sc_dmat, dma->dmamap, 0, dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, dma->dmamap); SIMPLEQ_INSERT_HEAD(&sc->txdma_list, dma, link); sc->txdma[idx] = NULL; } cnt++; sc->ti_txcnt--; TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT); ifp->if_timer = 0; } if (cnt != 0) TI_CDTXSYNC(sc, firstidx, cnt, BUS_DMASYNC_POSTWRITE); if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; } static int ti_intr(void *xsc) { struct ti_softc *sc; struct ifnet *ifp; sc = xsc; ifp = &sc->ethercom.ec_if; #ifdef notdef /* Avoid this for now -- checking this register is expensive. */ /* Make sure this is really our interrupt. */ if (!(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE)) return (0); #endif /* Ack interrupt and stop others from occurring. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ ti_rxeof(sc); /* Check TX ring producer/consumer */ (*sc->sc_tx_eof)(sc); } ti_handle_events(sc); /* Re-enable interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); if ((ifp->if_flags & IFF_RUNNING) != 0) if_schedule_deferred_start(ifp); return (1); } static void ti_stats_update(struct ti_softc *sc) { struct ifnet *ifp; ifp = &sc->ethercom.ec_if; TI_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD); ifp->if_collisions += (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames + sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions + sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) - ifp->if_collisions; TI_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD); } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ static int ti_encap_tigon1(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct ti_tx_desc *f = NULL; uint32_t frag, cur, cnt = 0; struct txdmamap_pool_entry *dma; bus_dmamap_t dmamap; int error, i; uint16_t csum_flags = 0; dma = SIMPLEQ_FIRST(&sc->txdma_list); if (dma == NULL) { return ENOMEM; } dmamap = dma->dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { struct mbuf *m; int j = 0; for (m = m_head; m; m = m->m_next) j++; printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) " "error %d\n", m_head->m_pkthdr.len, j, error); return (ENOMEM); } cur = frag = *txidx; if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) { /* IP header checksum field must be 0! */ csum_flags |= TI_BDFLAG_IP_CKSUM; } if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; /* XXX fragmented packet checksum capability? */ /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (i = 0; i < dmamap->dm_nsegs; i++) { if (frag > 383) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 6144); else if (frag > 255) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 4096); else if (frag > 127) CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE + 2048); else CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE); f = &sc->ti_tx_ring_nic[frag % 128]; if (sc->ti_cdata.ti_tx_chain[frag] != NULL) break; TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr; f->ti_len = dmamap->dm_segs[i].ds_len; f->ti_flags = csum_flags; if (vlan_has_tag(m_head)) { f->ti_flags |= TI_BDFLAG_VLAN_TAG; f->ti_vlan_tag = vlan_get_tag(m_head); } else { f->ti_vlan_tag = 0; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) return (ENOBUFS); cur = frag; TI_INC(frag, TI_TX_RING_CNT); cnt++; } if (i < dmamap->dm_nsegs) return (ENOBUFS); if (frag == sc->ti_tx_saved_considx) return (ENOBUFS); sc->ti_tx_ring_nic[cur % 128].ti_flags |= TI_BDFLAG_END; /* Sync the packet's DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->ti_cdata.ti_tx_chain[cur] = m_head; SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); sc->txdma[cur] = dma; sc->ti_txcnt += cnt; *txidx = frag; return (0); } static int ti_encap_tigon2(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx) { struct ti_tx_desc *f = NULL; uint32_t frag, firstfrag, cur, cnt = 0; struct txdmamap_pool_entry *dma; bus_dmamap_t dmamap; int error, i; uint16_t csum_flags = 0; dma = SIMPLEQ_FIRST(&sc->txdma_list); if (dma == NULL) { return ENOMEM; } dmamap = dma->dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m_head, BUS_DMA_WRITE | BUS_DMA_NOWAIT); if (error) { struct mbuf *m; int j = 0; for (m = m_head; m; m = m->m_next) j++; printf("ti_encap: bus_dmamap_load_mbuf (len %d, %d frags) " "error %d\n", m_head->m_pkthdr.len, j, error); return (ENOMEM); } cur = firstfrag = frag = *txidx; if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4) { /* IP header checksum field must be 0! */ csum_flags |= TI_BDFLAG_IP_CKSUM; } if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM; /* XXX fragmented packet checksum capability? */ /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (i = 0; i < dmamap->dm_nsegs; i++) { f = &sc->ti_rdata->ti_tx_ring[frag]; if (sc->ti_cdata.ti_tx_chain[frag] != NULL) break; TI_HOSTADDR(f->ti_addr) = dmamap->dm_segs[i].ds_addr; f->ti_len = dmamap->dm_segs[i].ds_len; f->ti_flags = csum_flags; if (vlan_has_tag(m_head)) { f->ti_flags |= TI_BDFLAG_VLAN_TAG; f->ti_vlan_tag = vlan_get_tag(m_head); } else { f->ti_vlan_tag = 0; } /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16) return (ENOBUFS); cur = frag; TI_INC(frag, TI_TX_RING_CNT); cnt++; } if (i < dmamap->dm_nsegs) return (ENOBUFS); if (frag == sc->ti_tx_saved_considx) return (ENOBUFS); sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END; /* Sync the packet's DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Sync the descriptors we are using. */ TI_CDTXSYNC(sc, firstfrag, cnt, BUS_DMASYNC_PREWRITE); sc->ti_cdata.ti_tx_chain[cur] = m_head; SIMPLEQ_REMOVE_HEAD(&sc->txdma_list, link); sc->txdma[cur] = dma; sc->ti_txcnt += cnt; *txidx = frag; return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ static void ti_start(struct ifnet *ifp) { struct ti_softc *sc; struct mbuf *m_head = NULL; uint32_t prodidx = 0; sc = ifp->if_softc; prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX); while (sc->ti_cdata.ti_tx_chain[prodidx] == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if ((*sc->sc_tx_encap)(sc, m_head, &prodidx)) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m_head); /* * If there's a BPF listener, bounce a copy of this frame * to him. */ bpf_mtap(ifp, m_head, BPF_D_OUT); } /* Transmit */ CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void ti_init(void *xsc) { struct ti_softc *sc = xsc; int s; s = splnet(); /* Cancel pending I/O and flush buffers. */ ti_stop(sc); /* Init the gen info block, ring control blocks and firmware. */ if (ti_gibinit(sc)) { aprint_error_dev(sc->sc_dev, "initialization failure\n"); splx(s); return; } splx(s); } static void ti_init2(struct ti_softc *sc) { struct ti_cmd_desc cmd; struct ifnet *ifp; const uint8_t *m; struct ifmedia *ifm; int tmp; ifp = &sc->ethercom.ec_if; /* Specify MTU and interface index. */ CSR_WRITE_4(sc, TI_GCR_IFINDEX, device_unit(sc->sc_dev)); /* ??? */ tmp = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; if (sc->ethercom.ec_capenable & ETHERCAP_VLAN_MTU) tmp += ETHER_VLAN_ENCAP_LEN; CSR_WRITE_4(sc, TI_GCR_IFMTU, tmp); TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0); /* Load our MAC address. */ m = (const uint8_t *)CLLADDR(ifp->if_sadl); CSR_WRITE_4(sc, TI_GCR_PAR0, (m[0] << 8) | m[1]); CSR_WRITE_4(sc, TI_GCR_PAR1, (m[2] << 24) | (m[3] << 16) | (m[4] << 8) | m[5]); TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0); /* Enable or disable promiscuous mode as needed. */ if (ifp->if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } /* Program multicast filter. */ ti_setmulti(sc); /* * If this is a Tigon 1, we should tell the * firmware to use software packet filtering. */ if (sc->ti_hwrev == TI_HWREV_TIGON) { TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0); } /* Init RX ring. */ ti_init_rx_ring_std(sc); /* Init jumbo RX ring. */ if (ifp->if_mtu > (MCLBYTES - ETHER_HDR_LEN - ETHER_CRC_LEN)) ti_init_rx_ring_jumbo(sc); /* * If this is a Tigon 2, we can also configure the * mini ring. */ if (sc->ti_hwrev == TI_HWREV_TIGON_II) ti_init_rx_ring_mini(sc); CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0); sc->ti_rx_saved_considx = 0; /* Init TX ring. */ ti_init_tx_ring(sc); /* Tell firmware we're alive. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0); /* Enable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; /* * Make sure to set media properly. We have to do this * here since we have to issue commands in order to set * the link negotiation and we can't issue commands until * the firmware is running. */ ifm = &sc->ifmedia; tmp = ifm->ifm_media; ifm->ifm_media = ifm->ifm_cur->ifm_media; ti_ifmedia_upd(ifp); ifm->ifm_media = tmp; } /* * Set media options. */ static int ti_ifmedia_upd(struct ifnet *ifp) { struct ti_softc *sc; struct ifmedia *ifm; struct ti_cmd_desc cmd; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_AUTONEGENB | TI_GLNK_ENB); CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB | TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX | TI_LNK_AUTONEGENB | TI_LNK_ENB); TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_BOTH, 0); break; case IFM_1000_SX: case IFM_1000_T: if ((ifm->ifm_media & IFM_FDX) != 0) { CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB); } else { CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB | TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB); } CSR_WRITE_4(sc, TI_GCR_LINK, 0); TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_GIGABIT, 0); break; case IFM_100_FX: case IFM_10_FL: case IFM_100_TX: case IFM_10_T: CSR_WRITE_4(sc, TI_GCR_GLINK, 0); CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX || IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB); } if ((ifm->ifm_media & IFM_FDX) != 0) { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX); } else { TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX); } TI_DO_CMD(TI_CMD_LINK_NEGOTIATION, TI_CMD_CODE_NEGOTIATE_10_100, 0); break; } sc->ethercom.ec_if.if_baudrate = ifmedia_baudrate(ifm->ifm_media); return (0); } /* * Report current media status. */ static void ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ti_softc *sc; uint32_t media = 0; sc = ifp->if_softc; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN) return; ifmr->ifm_status |= IFM_ACTIVE; if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_GLINK_STAT); if (sc->ti_copper) ifmr->ifm_active |= IFM_1000_T; else ifmr->ifm_active |= IFM_1000_SX; if (media & TI_GLNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) { media = CSR_READ_4(sc, TI_GCR_LINK_STAT); if (sc->ti_copper) { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_TX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_T; } else { if (media & TI_LNK_100MB) ifmr->ifm_active |= IFM_100_FX; if (media & TI_LNK_10MB) ifmr->ifm_active |= IFM_10_FL; } if (media & TI_LNK_FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; if (media & TI_LNK_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; } sc->ethercom.ec_if.if_baudrate = ifmedia_baudrate(sc->ifmedia.ifm_media); } static int ti_ether_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct ifaddr *ifa = (struct ifaddr *)data; struct ti_softc *sc = ifp->if_softc; if ((ifp->if_flags & IFF_UP) == 0) { ifp->if_flags |= IFF_UP; ti_init(sc); } switch (cmd) { case SIOCINITIFADDR: switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: arp_ifinit(ifp, ifa); break; #endif default: break; } break; default: return (EINVAL); } return (0); } static int ti_ioctl(struct ifnet *ifp, u_long command, void *data) { struct ti_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; struct ti_cmd_desc cmd; s = splnet(); switch (command) { case SIOCINITIFADDR: error = ti_ether_ioctl(ifp, command, data); break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU_JUMBO) error = EINVAL; else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET) { ti_init(sc); error = 0; } break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, command, data)) != 0) break; if (ifp->if_flags & IFF_UP) { /* * If only the state of the PROMISC flag changed, * then just use the 'set promisc mode' command * instead of reinitializing the entire NIC. Doing * a full re-init means reloading the firmware and * waiting for it to start up, which may take a * second or two. */ if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->ti_if_flags & IFF_PROMISC)) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->ti_if_flags & IFF_PROMISC) { TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0); } else ti_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { ti_stop(sc); } } sc->ti_if_flags = ifp->if_flags; error = 0; break; default: if ((error = ether_ioctl(ifp, command, data)) != ENETRESET) break; error = 0; if (command == SIOCSIFCAP) ti_init(sc); else if (command != SIOCADDMULTI && command != SIOCDELMULTI) ; else if (ifp->if_flags & IFF_RUNNING) ti_setmulti(sc); break; } (void)splx(s); return (error); } static void ti_watchdog(struct ifnet *ifp) { struct ti_softc *sc; sc = ifp->if_softc; aprint_error_dev(sc->sc_dev, "watchdog timeout -- resetting\n"); ti_stop(sc); ti_init(sc); ifp->if_oerrors++; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void ti_stop(struct ti_softc *sc) { struct ifnet *ifp; struct ti_cmd_desc cmd; ifp = &sc->ethercom.ec_if; /* Disable host interrupts. */ CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1); /* * Tell firmware we're shutting down. */ TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0); /* Halt and reinitialize. */ ti_chipinit(sc); ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL); ti_chipinit(sc); /* Free the RX lists. */ ti_free_rx_ring_std(sc); /* Free jumbo RX list. */ ti_free_rx_ring_jumbo(sc); /* Free mini RX list. */ ti_free_rx_ring_mini(sc); /* Free TX buffers. */ ti_free_tx_ring(sc); sc->ti_ev_prodidx.ti_idx = 0; sc->ti_return_prodidx.ti_idx = 0; sc->ti_tx_considx.ti_idx = 0; sc->ti_tx_saved_considx = TI_TXCONS_UNSET; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static bool ti_shutdown(device_t self, int howto) { struct ti_softc *sc; sc = device_private(self); ti_chipinit(sc); return true; }