Definition of the Porting Layer for the X v11 Sample Serer

Susan Angebranndt

Raymond Dewry
Philip Karlton
Todd Newman

Digital Equipment Corporation
minor revisions by

Bob Scheifler

Massachusetts Institute of Technology
Revised for Release 4 and Release 5 by

Keith Packard
MIT X Consortium

Revised for Release 6 by

David P Wggins

X Consortium

Porting Layer Definition -1- April 8, 1994

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, yparson obtaining a cgpf this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limita-
tion the rights to use, cgpmodify, merge, publish, distribute, sublicense, and/or sell copies of the Soft-

ware, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The abeoe mpyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENTN NO EVENT SHALL THE X
CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY WHETHER IN
AN ACTION OF CONTRACT TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNEC-
TION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Porting Layer Definition -2- April 8, 1994

The following document explains the structure of the X Wim@gstem display server and the interfaces

among the larger pieces. It is intended as a reference for programmers who are implementing an X Display
Server on their workstation hardve. Itis included with the X Winde System source tape, along with the
document "Strategies for Porting the X v11 Sample Sérdgreorder in which you should read these doc-
uments is:

1) Readhe first section of the "Strategies for Porting" document (Owsrefdorting Process).
2) Skimove this document (the Definition document).
3) Skimove the remainder of the Strategies document.

4) Startplanning and working, referring to the Strategies and Definition documents.

You may also want to look at the following documents:

. "The X Windav System" for an gerview of X.

. "Xlib - C Language X Interface" for a wieof what the client programmer sees.

. "X Window System Protocol” for a terse description of the byte stream protocol between the client
and server.

LK201 and DEC are trademarks of Digital Equipment Corporation. Macintosh and Apple are trademarks
of Apple Computerinc. PostScripis a trademark of Adobe Systems, Inc. Ethernet is a trademark of
Xerox Corporation.X Window System is a trademark of X Consortium, Inc. Cray is a trademark of Cray
Research, Inc.

To understand this document and the accompanying source code, you sheutd@languageYou

should be familiar with 2D graphics and windowing concepts such as clipping, bitmaps, fonteuetc.
should hae a gneral knowledge of the X WindoSystem. B implement the server code on your hard-
ware, you need to kmoa lot about your hardware, its graphic display device(s), and (possibly) its network-
ing and multitasking facilities.

This document depends a lot on the source code, so you sheeld Iséing of the code handy.

Some source on the distribution tape is directly compilable on your machine. Some of it will require modi-
fication. Otheparts may heae © be @mpletely written from scratch.

The tape also includes source for a sample implementation of a display server which runs on a variety of
color and monochrome displays which you will find useful for implementigdygoe of X server.

1. TheX Window System

The X Windav System, or simply "X," is a windowing system that provides high-performance, high-le
device-independent graphics.

X is a windowing system designed for bitmapped graphic displays. The display\aa Baple, mono-
chrome display or it can i@ a olor display with up to 32 bits per pixel with a special graphics processor
doing the vaork. (Inthis document, monochrome means a black and white display with one bit per pixel.
Even though the usual meaning of monochrome is more general, this special case is so common that we
decided to reseevthe word for this purpose.)

X is designed for a networking environment where users can run applications on machines other than their

own workstations. Sometime#)e connection isw@ an Bhernet network with a protocol such as TCP/IP;
but, ary "reliable" byte stream is alleeble. A high-bandwidth byte stream is preferable; RS-232 at 9600

Porting Layer Definition -3- April 8, 1994

baud would be si@ without compression techniques.

X by itself allows great freedom of desigRor instance, it does not includeyauser interface standard. Its
intent is to "provide mechanism, not pglic By making it general, it can be the foundation for a wide vari-
ety of interactre oftware.

For a nore detailed eerview, see the document "The X WinddSystem." for details on the byte stream
protocol, see "X Winde System protocol."”

2. OVERVIEW OF THE SERVER

The display server manages windows and simple graphics requests for the user on behalf of different client
applications. Thelient applications can be running oryanachine on the netwvk. Theserver mainly
does three things:

. Responds to protocol requests from existing clients (mostly graphic and text drawing commands)
. Sends device input @ystrokes and mouse actions) and otlvents to existing clients
. Maintains client connections

The server code is @mized into four major pieces:

. Device Independent (DIX) layer - code shared among all implementations

. Operating System (OS) layer - code that is different for each operating system but is shared among
all graphic devices for this operating system

. Device Dependent (DDX) layer - code that is (potentially) different for each combination of operat-
ing system and graphic device

. Extension Interface - a standard way to add features to the X server

The "porting layer" consists of the OS and DDX layers; these are actually parallel and neither one is on top
of the other The DIX layer is intended to be portable without change to target systems and is not detailed
here, although seral routines in DIX that are called by DDX are documented. Extensions incorporate

new functionality into the server; and require additional functionalisr @ Smple DDX.

The following sections outline the functions of the layers. Section 3 briefly tells what you need to know
about the DIX layer The OS layer is explained in Section 4. Sectiornvésghe theory of operation and
procedural interface for the DDX laye®ection 6 describes the functions which exist for the extension
writer.

2.1. NotesOn Resources and Large Structs

X resources are C structs inside the ser@ient applications create and manipulate these objects accord-
ing to the rules of the X byte stream protocol. Client applications refer to resources with resource IDs,
which are 32-bit integers that are sevdrdhe netvork. Within the serverof course, thg are just C

structs, and we refer to them by pointers.

The DDX layer has seral kinds of resources:

. Window
. Pixmap
. Screen
. Device

Porting Layer Definition -4- April 8, 1994

. Colormap

. Font
. Cursor
. Graphics Contexts

The type names of the more important server structs usually end in "Rec," such as "DeviceRec;" the pointer
types usually end in "Ptr," such as "DevicePtr."

The structs and important defined constants are declared in .h filesvéhahimes that suggest the name of

the object.For instance, there are dwh files for windows, winde.h and windowstih. windawv.h defines

only what needs to be defined in order to use windows without peeking inside of them; windowstr.h defines
the structs with all of their components in great detail for those who need it.

Three kinds of fields are in these structs:
. Attribute fields - struct fields that contain valueg likrmal structs
. Pointers to procedures, or structures of procedures, that operate on the object

. A private field (or two) used by your DDX code to keepvge data (probably a pointer to another
data structure), or an array ofyate fields, which is sized as the server initializes.

DIX calls through the strud’procedure pointers to do its tasks. These procedures are set either directly or
indirectly by DDX procedures. Most of the procedures described in the remainder of this document are
accessed through one of these struets.example, the procedure to create a pixmap is attached to a
ScreenRec and might be called by using the expression

(* pScreen->CreatePixmap)(pScreen, width, height, depth).

All procedure pointers must be set to some routine unless noted otherwise; a null pointeeviifdru-
nate consequences.

Procedure routines will be indicated in the documentation by thiscton:
void pScreen->MyScreenRoutine(arg, arg, -..)
as opposed to a free routine, not in a data structure:

void MyFreeRoutine(arg, arg, ...)

The attribute fields are mostly set by DIX; DDX should not modify them unless noted otherwise.

3. DIX LAYER

The DIX layer is the machine and device independent part of X. The source should be common to all oper-
ating systems and diees. Theport process should not include changes to this part, therefore internal inter-
faces to DIX modules are not discussed, except for public interfaces to the DDX and the OS layers.

In the process of getting your server to work, if you think that DIX must be modified for purposes other
than bug fixes, you may be doing something wrafeep looking for a more compatible solution. When
the next release of the X server codevalable, you should be able to just drop in thevidX code and
compile it. If you change DIX, you will he 1o remember what changes you made and wileha change
the nev sources before you can update to the mersion.

The heart of the DIX code is a loop called the dispatch loop. Each time the processor goes around the loop,
it sends dfaccumulated inputwents from the input devices to the clients, and it processes requests from

Porting Layer Definition -5- April 8, 1994

the clients. This loop is the mosenized way for the server to process the asynchronous requests that it
needs to process. Most of these operations are performed by OS and DDX routines that you must supply.

4. OSLAYER

This part of the source consists of & f@utines that you ha& © rewrite for each operating system. These
OS functions maintain the client connections and schedule work to be done for clieytsls®pgovide
an interface to font files, font name to file hame translation, anteled memory management.

void Oslnit()
Osilnit initializes your OS code, performing whagetasks need to be done. Frequently there is not much
to be done. The sample server implementation is in Xserver/os/osinit.c.

4.1. Schedulingand Request Deliery

The main dispatch loop in DIX creates the illusion of multitasking between different windows, while the
server is itself but a single process. The dispatch loop breaks up the work for each client into small
digestible parts. Some parts are requests from a client, such as individual graphic commands. Some parts
are @ents delvered to the client, such agystrokes from the useiThe processing ofvents and requests

for different clients can be interbeatl with one another so true multitasking is not needed in the server.

You must supply some of the pieces for proper scheduling between clients.

int WaitForSomething(pClientReady)
int *pClientReady;

WaitForSomething is the scheduler procedure you must write that will suspend your server process until
something needs to be done. This call shouldenttzk server suspend until one or more of the following
occurs:

. There is an inputvent from the user or hardware (see SetlnputCheck())

. There are requests waiting from known clients, in which case you should return a count of clients
stored in pClientReady

. A new client tries to connect, in which case you should create the client and then continue waiting

Before WaitForSomething() computes the masks to pass to select, it needs to see if there is anything to do
on the work queue; if so, it must call a DIX routine called ProcessWorkQueue.
extern WorkQueuePtr wrkQueue;

if (workQueue)
ProcessWorkQueue ();

If WaitForSomething() decides it is about to do something that might block (in the sample befors it
calls select()) it must call a DIX routine called BlockHandler().

void BlockHandler(pTimeout, pReadmask)
pointer pTimeout;
pointer pReadmask;
The types of the arguments are for agreement between the OS and DDX implemeriatithespTime-
out is a pointer to the information determininghiong the block is allowed to last, and the pReadmask is
a pointer to the information describing the descriptors that will be waited on.

In the sample servepTimeout is a struct tinval **, andpReadmask is the address of the select() mask
for reading.

The DIX BlockHandler() iterates through the Screens, for each one calling its BlockHahdirck-
Handler is declared thus:

Porting Layer Definition -6- April 8, 1994

void xxxBlockHandler(nscreen, pbdata, pgtReadmask)
int nscreen;
pointer pbdata;
struct timeval ** p ptv;
pointer pReadmask;
The arguments are the indef the Screen, the blockData field of the Screen, and the arguments to the
DIX BlockHandler().

Immediately after WaitForSomething returns from the blosken if it didn’t actually block, it must call
the DIX routine WakeupHandler().

void WakeupHandler(result, pReadmask)
int result;
pointer pReadmask;

Once agin, thetypes are not specified by DIX. The result is the success indicator for the thing that (may
have) blocked, and the pReadmask is a mask of the descriptors that caree lacthe sample server,
result is the result from select(), and pReadmask is the address of the select() mask for reading.

The DIX WakeupHandler() calls each ScreahakeupHandler A WakeupHandler is declared thus:

void xxxWakeupHandler(nscreen, pbdata, pReadmask)
int nscreen;
pointer pbdata;
unsigned long result;
pointer pReadmask;
The arguments are the indef the Screen, the blockData field of the Screen, and the arguments to the
DIX WakeupHandler().

In addition to the per-screen BlockHandlers; amdule may register block and wakeup handlers (only
together) using:

Bool RegisterBlockAndWakeupHandlers (blockHandieakeupHandlelockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
A FALSE return code indicates that the registration failed for lack of menforyemove a egstered
Block handler at other than server reset time (whenateeall remeed automatically), use:

RemaoreBlockAndWakeupHandlers (blockHandlerakeupHandleblockData)
BlockHandlerProcPtr blockHandler;
WakeupHandlerProcPtr akeupHandler;
pointer blockData;
All three arguments must match the values passed to RegisterBlockAndWakeupHandlers.

These registered block handlers are called after the per-screen handlers:

void (*BlockHandler) (blockData, pptypReadmask)

pointer blockData;
OSTimePtr pptv;
pointer pReadmask;

Any wakeup handlers registered with RegisterBlockAndWakeupHandlers will be called before the Screen
handlers:

void (*WakeupHandler) (blockData, epReadmask)
pointer blockData;
int err;
pointer pReadmask;

Porting Layer Definition -7- April 8, 1994

The WaitForSomething on the sample server also has a built in scveethaadarkens the screen if no
input happens for a period of time. The sample server implementation is in Xserver/os/WaitFor.c.

Note that WaitForSomething() may be called when you alreads daseal outstanding things ¥ents,
requests, or neclients) queued upFor instance, your server mayvegust done a large graphics request,
and it may hee keen a long time since WaitForSomething() was last called. Ijclemts hae lots of
requests queued up, DIX will only service some of them fovenglient before going on to the next client
(see isltTimeToYield, belw). ThereforeWaitForSomething() will hae © report that these same clients
still have requests queued up the next time around.

An implementation should return information on as ynautstanding things as it camor instance, if your
implementation alays checks for client data first and does not repgorimout e/ents until there is no

client data left, your mouse andyboard might get locked out by an application that constantly barrages
the server with graphics drawing requests.

A list of indexes (client->index) for clients with data ready to be read or processed should be returned in
pClientReadyand the count of indees returned as the result value of the call. These are not clients that
have full requests readyut ary clients who hae any @ta ready to be read or processed. The DIX dis-
patcher will process requests from each client in turn by calling ReadRequestFromClient(), belo

WaitForSomething() must createwmelients as thg are requested (by whater mechanism at the transport
level). A new client is created by calling the DIX routine:

ClientPtr NextAvailableClient(ospriv)
pointer ospriv;
This routine returns NULL if a meclient cannot be allocated (e.g. maximum number of clients reached).
The ospn argument will be stored into the OS yaie field (pClient->osPvate), to store OS préte infor-
mation about the client. In the sample sertrex osPrate field contains the number of the socket for this
client. See also "Ne Client Connections." NextailableClient() will call InsertFakeRequest(), so you
must be prepared for this.

If there are outstanding inputents, you should makaure that the tw SetinputCheck() locations are
unequal. Thd®IX dispatcher will call your implementation of ProcessinputEvents() until the Set-
InputCheck() locations are equal.

The sample server contains an implementation of Wetbmething(). Théollowing two routines indi-
cate to WaitForSomething() what devices should be waitedffbrs an OS dpendent type; in the sample
server it is an open file descriptor.

int AddEnabledDevice(fd)
int fd;

int RemaeEnabledDevice(fd)
int fd;
These tw routines are usually called by DDX from the initialize cases of the Input Procedures that are
stored in the DeviceRec (the routine passed to AddinpitB@). Thesample server implementation of
AddEnabledDevice and ReweEnabledDevice are in Xserver/os/connection.c.

4.2. NewClient Connections

The process whereby amelient-server connection starts up is very dependent upon what your byte
stream mechanism. This section describes byte stream initiation using examples from the TCP/IP imple-
mentation on the sample server.

The first thing that happens is a client initiates a connection with the.sklwera dient knows to do this
depends upon your network facilities and the Xlib implementation. In a typical scenario, a user named
Fred on his X workstation is logged onto a Cray supercomputer running a command shell in armX windo
Fred can type shell commands andéhtie Cray respond as though the X server were a dumb terminal.
Fred types in a command to run an X client application that was linked with Xlito looks at the shell
environment variable DISPDA which has the value "fredsbittube:0.0." The host name of Fred’s

Porting Layer Definition -8- April 8, 1994

workstation is "fredsbittube," and the Os are for multiple screens and multiple X server processes. (Pre-
cisely what happens on your system depends uperkremd Xlib are implemented.)

The client application calls a TCP routine on the Cray to open a TCP connection for X to communicate
with the network node "fredsbittube." The TCP software on the Cray does this by looking up the TCP
address of "fredsbittube” and sending an open request to TCP port 6000 on fredsbittube.

All X servers on TCP listen for meclients on port 6000 by default; this is known as a "well-known port" in
IP terminology.

The server receés this request from its port 6000 and checks where it came from to see if it is on the
servers list of "trustworthy" hosts to talk to. Then, it opens another port for communications with the
client. Thisis the byte stream that all X communications will gero

Actually, it is a it more complicated than that. Each X server process running on the host machine is
called a "display Eachdisplay can he nore than one screen that it manages. "corporatehydra:3.2" rep-
resents screen 2 on display 3 on the multi-screened network node cosgbeatdfheopen request would

be sent on well-known port number 6003.

Once the byte stream is set up, what goes on does not depend very much upon whether or not it is TCP.
The client sends an xConnClientPrefix struct (see Xproto.h) that has the version numbers for the version of
Xlib it is running, some byte-ordering information, andtgharacter strings used for authorization. If the
server does not likthe authorization strings or the version numbers do not match within the rules, or if
anything else is wrong, it sends a failure response with a reason string.

If the information neer comes, or comes much too slowtlye connection should be broket. ofou must
implement the connection timeout. The sample server implements this by keeping a timestamp for each
still-connecting client and, each time just before it attempts to acoggiomaections, it closes gron-

nection that are too old. The connection timeout can be set from the command line.

You must implement whater authorization schemes you want to support. The sample server on the distri-
bution tape supports a simple authorization scheme. The only interface seen by DIX is:

char *
ClientAuthorized(client, proto_n, auth_proto, string_n, auth_string)
ClientPtr client;
unsigned int proto_n;
char *auth_proto;
unsigned int string_n;
char *auth_string;

DIX will only call this once per client, once it has read the full initial connection data from the client. If the
connection should be accepted ClientAuthorized() should return NULL, and otherwise should return an
error message string.

Accepting ne connections happens internally to WaitEomething(). \&itForSomething() must call the
DIX routine NextAvailableClient() to create a client object. Processing of the initial connection data will
be handled by DIX.Your OS layer must be able to map from a client to wieai@formation your OS

code needs to communicate on thesgibyte stream to the client. DIX uses this ClientPtr to refer to the
client from nav on. Thesample server uses the osBt field in the ClientPtr to store the file descriptor
for the socket, the input and output buffers, and authorization information.

To initialize the methods you choose to wlldients to connect to your seryenain() calls the routine

void CreateWellKnownSockets()

This routine is called only once, and not called when the server is Teseicreate ansockets during
server resets, the following routine is called from the main loop:

void ResetWellKnownSockets()
Sample implementations of both of these routines are found in Xserver/os/connection.c.

Porting Layer Definition -9- April 8, 1994

For more details, see the section called "Connection Setup" in the X protocol specification.

4.3. ReadingData from Clients

Requests from the client are read in as a byte stream by the QSTlgemay be in the form of seral

blocks of bytes deliered in sequence; requests may be brokenvaphbiock boundaries or there may be

mary requests per block. Each request carries with it length information. It is the responsibility of the fol-
lowing routine to break it up into request blocks.

int ReadRequestFromClient(who)
ClientPtr who;

You must write the routine ReadRequestFromClient() to get one request from the byte stream belonging to
client "who." You must swap the third and fourth bytes (the second 16-bit word) according to the byte-
swap rules of the protocol to determine the length of the request. This length is measured in 32-bit words,
not in bytes. Therefore, the theoretical maximum request is 256K. {tégvitee maximum length allowed

is dependent upon the sengariput buffer This size is sent to the client upon connection. The maximum
size is the constant MAX_REQUEST_SIZE in Xserver/include/os.h) The rest of the request you return is
assumed NDto be @rrectly swapped for internal use, because that is the responsibility of DIX.

The 'who’ argument is the ClientPtr returned from Waitomething. Theeturn value indicating status
should be set to the (pos#) byte count if the read is successful, 0 if the read was blocked, getvee
error code if an error happened.

You must then store a pointer to the bytes of the request in the client request buffer field; who->request-
Buffer. This can simply be a pointer into your buffer; DIX may modify it in place but will not otherwise
cause damage. Of course, the request must be contiguous; you must shuffle it around in your buffers if not.

The sample server implementation is in Xserver/os/io.c.

DIX can insert data into the client stream, and can cause a "replay"” of the current request.

Bool InsertFakeRequest(client, data, count)
ClientPtr client;
char *data;
int count;

int ResetCurrentRequest(client)
ClientPtr client;

InsertFakeRequest() must insert the specified number of bytes of data into the head of the input buffer for
the client. This may be a complete request, or it might be a partial reéfoeskample, NextAailable-

Cient() will insert a partial request in order to read the initial connection data sent by the client. The routine
returns FALSE if memory could not be allocated. ResetCurrentRequest() should "back up" the input buffer
so that the currentlyxecuting request will be reecuted. DIXmay hae dtered some values (e.g. the

overall request length), so you must recheck to see if you st habmplete request. ResetCurrentRe-

guest() should alays cause a yield (isltTimeToYield).

4.4. Sendingevents, Errors And Replies D Clients

int WriteToClient(who, n, buf)
ClientPtr who;
int n;
char *buf;
WriteToClient should write n bytes starting at buf to the ClientPtr "who". It returns the number of bytes

Porting Layer Definition -10 - April 8, 1994

written, but for simplicitythe number returned must be either the same value as the number requested, or
-1, signaling an errorThe sample server implementation is in Xserver/os/io.c.

void SendErrorToClient(client, majorCode, minorCode, resld, errorCode)

ClientPtr client;

unsigned int majorCode;

unsigned int minorCode;

XID resld;

int errorCode;
SendErrorToClient can be used to send errors back to clients, although in most cases your request function
should simply return the error code, having set client->errorValue to the appropriate error value to return to
the client, and DIX will call this function with the correct opcodes for you.

void FlushAllOutput()
void FlushlfCriticalOutputPending()

void SetCriticalOutputPending()
These three routines may be implemented to support buffered or delayed writes to clients, but at the very
least, the stubs mustist. FlushAllOutput(Junconditionally flushes all output to clients; FlushlfCrit-
icalOutputPending() flushes output only if SetCriticalOutputPending() has be called since the last time out-
put was flushed. The sample server implementation is in Xserver/os/io.c and actually ignores requests to
flush output on a per-client basis if it knows that there are requests in thas aipat'queue.

4.5. Font Support

In the sample serveionts are encoded in disk files or fetched from the font seFeerdisk fonts, there is

one file per font, with a file name éKfixed.pcf". Font server fonts are reagen the network using the X

Font Server Protocol. The disk directories containing disk fonts and the names of the font servers are listed
together in the current "font path.”

In principle, you can put all your fonts in ROM or in RAM in your servéu can put them all in one
library file on disk. You could generate them on the fly from seakescriptions. Byplacing the appropri-
ate code in the Font Libraryou will automatically export fonts in that format both through the X server
and the Font server.

With the incorporation of font-server based fonts and the Speedo donation from Bitstream, the font inter-
faces hae been meed into a separate librgrgow called the Font Library (../fonts/lib). These routines are
shared between the X server and the Font seswarstead of this document specifying what you must
implement, simply refer to the font library interface specification for the details. All of the interface code to
the Font library is contained in dix/dixfonts.c

4.6. Memory Management

Memory management is based on functions in the C runtime libxajoc(), Xrealloc(), and Xfree()

work just like malloc(), realloc(), and free(), except that you can pass a null pointer to Xrealloc¢etid ha
allocate an& or pass a null pointer to Xfree() and nothing will happen. The versions in the sample server
also do some checking that is useful forugding. Consula C muntime library reference manual for more
details.

The macros ALLOCATE_LOCAL and DEALLOCATE_LOCAL are provided in Xserver/include/os.h.
These are useful if your compiler supports alloca() (or some method of allocating memory from the stack);
and are defined appropriately on systems which support it.

Treat memory allocation carefully in your implementation. Memory leaks can be very hard to find and are
frustrating to a userAn X server could be running for days or weeks without being reset, jest lgular

Porting Layer Definition -11 - April 8, 1994

terminal. Ifyou leak a fes dozen k per daythat will add up and will cause problems for users thatlea
their workstations on.

4.7. ClientScheduling

The X server has the ability to schedule clients muehdik gerating system would, suspending and
restarting them without gerd for the state of their input iefs. Thisfunctionality allows the X server to
suspend one client and continue processing requests from other clients while waiting for a long-term net-
work activity (like loading a font) before continuing with the first client.

Bool isltTimeToYield;

isltTimeToYield is a global variable you can set if you want to tell DIX to end the cli#miie slice" and
start paying attention to the next client. After the current request is finished, DIX wal imthe next
client.

In the sample serveReadRequestFromClient() sets isltTimeToYield after 10 requests packetsnira ro
read from the same client.

This scheduling algorithm canvea &rious effect upon performance whertdients are drawing into

their windows simultaneoushif it allows one client to run until its request queue is empty by ignoring
isltTimeToYield, the cliens queue may in fact mer empty and other clients will be blocked out. On the
other hand, if it switchs between different clients too quijgdyformance may suffer due to too much
switching between contés. For example, if a graphics processor needs to be set up with drawing modes
before drawing, and twdifferent clients are drawing with different modes int@tiifferent windows, you
may switch your graphics processor modes so often that performance is impacted.

See the Strategies document for heuristics on setting isltTimeToYield.

The following functions provide the ability to suspend request processing on a particular client, resuming it
at some later time:

int IgnoreClient (who)
ClientPtr who;

int AttendClient (who)
ClientPtr who;
Ignore client is responsible for pretending that tivergdient doesrt exist. WaitForSomething should not
return this client as ready for reading and should not return if only this client is retiegdClient undoes
whatever IgnoreClient did, setting it up for input again.

Three functions support "process control” for X clients:

Bool ClientSleep (client, function, closure)
ClientPtr client;
Bool (*function)();
pointer closure;

This suspends the current client (the calling routine is responsible for making its way back to Dispatch()).
No more X requests will be processed for this client until ClientWakeup is called.

Bool ClientSignal (client)
ClientPtr client;

This function causes a call to the (*function) parameter passed to ClientSleep to be queued on the work
gueue. Thigloes not automatically "wakeup" the client, but the function called is free to do so by calling:

ClientWakeup (client)
ClientPtr client;

Porting Layer Definition -12 - April 8, 1994

This re-enables X request processing for the specified client.

4.8. OtherOS Functions
void
ErrorF(char *f, ...)

void
FaalError(char *f, ...)

void
Error(str)
char *str;

You should write these three routines to provide for diagnostic output from the dix and ddx layers, although
implementing them to produce no output will not affect the correctness of your. d&meef() and

FatalError() take a pintf() type of format specification in the first argument and an implementation-depen-
dent number of arguments following that. Normathe formats passed to ErrorF() and FatalError() should

be terminated with a mdine. Error()provides an os interface for printing out the string passed as an argu-
ment followed by a meaningful explanation of the last system. edmmally the string does not contain a
newline, and it is only called by the ddx layén the sample implementation, Error() uses the perror()
function.

After printing the message arguments, FatalError() must be implemented such that the server will call
AbortDDX() to give the ddx layer a chance to reset the hardware, and then terminate the server; it must not
return.

The sample server implementation for these routines is in Xserver/os/util.c.

4.9. Idiom Support

The DBE specification introduces the notion of idioms, which are groups of X requests which can be
executed more efficiently when taken as a whole compared to being performed individually and sequen-
tially. This following server internal support to allows DBE implementations, as well as other parts of the
serverto do diom processing.

xRegPtr PeekNextRequest(xReqgPtr req, ClientPtr client, Bool readmore)

If req is NULL, the return value will be a pointer to the start of the complete request that follows the one
currently being vecuted for the client. If req is not NULL, the function assumes that req is a pointer to a
request in the clierg’request bufferand the return value will be a pointer to the the start of the complete
request that follows req. If the complete request is valadble, the function returns NULL; pointers to
partial requests will ner be returned. If(and only if) readmore is TRUE, PeekNextRequest should try to
read an additional request from the client if one is not alreaable in the client request buffer If
PeekNextRequest reads more data into the request, litgferuld not mee a change the existing data.

void SkipRequests(xReqPtr req, ClientPtr client, int numskipped)

The requests for the client up to and including the one specified by req will be skipped. numskipped must
be the number of requests being skipped. Normal request processing will resume with the request that fol-
lows req. The caller must notveanodified the contents of the request buffer iy aay (e.g., by doing

byte swapping in place).

Additionally, two macros in 0s.h operate on the xReq pointer returned by PeekNextRequest:

int ReqLen(xReqPtr req, ClientPtr client)
The value of ReqgLen is the request length in bytes of tlea gReq.

otherReqTypePtr CastxReq(xReq *req, otherReqTypePtr)

Porting Layer Definition -13- April 8, 1994

The value of CastxReq is the eersion of the gren request pointer to an otherReqTypePtr (which should
be a pointer to a protocol structure type). Only those fields which come after the length field of otherReq-
Type may be accessed via the returned pointer.

Thus the first tw fields of a request, reqType and data, can be accessed directly using the xReq * returned
by PeekNgtRequest. Theext field, the length, can be accessed with RegLen. Fields beyond that can be
accessed with CastxReq. This complexity was necessary because of the reencoding of core protocol that
can happen due to the BigRequests extension.

5. DDXLAYER

This section describes the interface between DIX and DDX. While there may be an OS-deperalent dri
interface between DDX and the physical device, that interface is left to the DDX implementor and is not
specified here.

The DDX layer does most of its work through procedures that are pointed to by different structs. As previ-
ously described, the behavior of these resources is largely determined by these procedure pointers. Most of
these routines are for graphic display on the screen or support functions thereof. The rest are for user input
from input devices.

5.1. INPUT

In this document "input"” refers to input from the ysach as mouse gyboard, and bar code readers. X

input devices are of geral types: keyboard, pointing device, and maathers. Thecore server has support

for extension devices as described by the X Input Extension document; the interfaces used by that extension
are described eledere. Thecore devices are actually implemented as ¢allections of devices, the

mouse is a ButtonDevice, a ValuatorDevice and a PtrFeedbackDevice whisttbarkl is a kyDevice, a
FocusDevice and a KbdFeedbackide. Eaclpart implements a portion of the functionality of the device.

This abstraction is hidden from weor core devices by DIX.

You, the DDX programmeere responsible for some of the routines in this section. Others are DIX rou-
tines that you should call to do the things you need to do in these DDX rouR@eattention to which is
which.

5.1.1. InputDevice Data Structures

DIX keeps a global directory of devices in a central data structure called Inputmfeach device there is
a cevice structure called a DeeRec. DIXcan locate anDeviceRec through Inputinfo. In addition, it
has a special pointer to identify the main pointing device and a special pointer to identify the main
keyboard.

The DeviceRec (Xserver/include/input.h) is a device-independent structure that contains the state of an
input device. A DevicePtr is simply a pointer to a DeviceRec.

An xEvent describes awvent the server reports to a client. Defined in Xproto.h, it is a huge struct of union
of structs that hze fields for all kinds of eents. All of the variants werlap, so that the struct is actually
very small in memory.

5.1.2. Piocessing Events
The main DDX input interface is the following routine:

void ProcessinputEvents()
You must write this routine to de#r input events from the userDIX calls it when input is pending (see
next section), and possiblyan when it is not. You should write it to geteents from each device and
deliver the events to DIX. To deliver the events to DIX, DDX should call the following routine:

Porting Layer Definition -14 - April 8, 1994

void DevicePtr->processinputProc(pEvent, device, count)

XEventPtr gents;

DevicelntPtr device;

int count;
This is the "input proc" for the device, a DIX procedure. DIX will fill in this procedure pointer to one of its
own routines by the time ProcessinputEvents() is called the first time. Call this input proc routine as many
times as needed to dedi as mary events as should be dedired. DIXwill buffer them up and send them
out as needed. Count is set to the numbevafteecords which makup me atomic devicevent and is
always 1 for the core devices (see the X Input Extension for descriptions of devices which may use count >
1).

For example, your ProcessinputEvents() routine might check the mouse arefoarkl. Ifthe leyboard
had sgeral keystrokes queued up, it could just call tlegtboards processinputProc as matimes as

needed to flush its internal queue.

evant is an xEvent struct you pass to the input proc. When the input proc returns, it is finished with the
evant rec, and you can fill in mevalues and call the input proc again with it.

You should deliver the events in the same order that yheere generated.

For keyboard and pointing devices the xEvent variant shouldegButonPointer Fill in the following
fields in the xEvent record:

type isone of the following: KyPress, €yRelease, ButtonPress,
ButtonRelease, or MotionNotify
detail forKeyPress or l€yRelease fields, this should be the
key number (not the ASCII code); otherwise unused
time isthe time that thevent happened (32-bits, in milliseconds, arbitrary origin)
rootX isthe x coordinate of cursor
rootY isthe y coordinate of cursor

The rest of the fields are filled in by DIX.

The time stamp is maintained by your code in the DDX |ay®f it is your responsibility to stamp all
evants correctly.

The x and y coordinates of the pointing device and the time must be filled in fegrdltypes including
keyboard &ents.

The pointing device must report all button press and releaatse Inaddition, it should report a Motion-
Notify event every time it gets called if the pointing device hasvatbgnce the last notify Intermediate
pointing device mees ae stored in a special GetMotionEvents byffiecause most client programs are
not interested in them.

There are quite a collection of sample implementations of this routine, one for each supported device.

5.1.3. elling DIX When Input is Pending

In the serves dspatch loop, DIX checks to see if there iy davice input pending whewer WaitFor-
Something() returns. If the check says that input is pending, DIX calls the DDX routine ProcessIn-
putEvents().

This check for pending input must be very quick; a procedure call is wwo $le code that does the check
is a hardwired IF statement in DIX code that simply compares the values pointed togoytters. Ifthe
values are different, then it assumes that input is pending and ProcessinputEvents() is called by DIX.

You must pass pointers to DIX to tell it what values to compare. The following procedure is used to set
these pointers:

Porting Layer Definition -15- April 8, 1994

void SetlnputCheck(pl, p2)
long *p1, *p2;
You should call it sometime during initialization to indicate to DIX the correct locations to chfeek.

should pay special attention to the size of what Hetually point to, because the locations are assumed to
be longs.

These tw pointers are initialized by DIX to point to arbitrary values that afferdint. Inother words, if
you forget to call this routine during initialization, the worst thing that will happen is that ProcessiIn-
putEvents will be called when there are mengs to process.

pl and p2 might point at the head and tail of some shared memory queue. Another use wouleebe to ha
one point at a constant 0, with the other pointing at some mask containing 1s for each input device that has
something pending.

The DDX layer of the sample server calls SetinputCheck() once when thesgiveté internal queue is
initialized. Itpasses pointers to the quesledad and tail. See Xserver/mi/mieg.c.

int TimeSinceLastinputEvent()
DDX must time stamp all hardware inpweats. ButDIX sometimes needs to kwahe time and the OS
layer needs to knothe time since the last hardware inpugre in order for the screensai to work.
TimeSinceLastinputEvent() returns the this time in milliseconds.

5.1.4. Contolling Input Devices

You must write four routines to do various device-specific things with élgedard and pointing device.
They can hae any mme you wish because you pass the procedure pointers to DIX routines.

int pinternalDevice->valuator->GetMotionProc(pdevice, coords, start, stop, pScreen)

DevicelntPtr pdevice;

xTimecoord * coords;

unsigned long start;

unsigned long stop;

ScreenPtr pScreen;
You write this DDX routine to fill in coords with all the motiomeats that hae imes (32-bit count of mil-
liseconds) between time start and time stop. It should return the number of metitsreturned. If there
iS no motion gents support, this routine should do nothing and return zero. The maximum number of
coords to return is set in InitPointerDeviceStruct(), Wwelo

When the user drags the pointing device, the cursor position theoretically sweeps through an infinite num-
ber of points. Normallya dient that is concerned with points other than the starting and ending points will
receve a pinter-mae event only as often as the server generates themvgMents do not queue up;

each n& one replaces the last in the queud.yerver if desired, can implement a scheme teeshese
intermediate wents in a motion bufferA client application, lik a @int program, may then request that

these gents be deliered to it through the GetMotionProc routine.

void pinternalDevice->bell->BellProc(percent, pDevice, ctrl, unknown)
int percent;
DevicelntPtr pDevice;
pointer ctrl;
int class;
You need to write this routine to ring the bell on tlestboard. louds a number from 0 to 100, with 100
being the loudest. Class is either BellFeedbackClass or KbdFeedbackClass (from XI.h).

Porting Layer Definition -16 - April 8, 1994

void pinternalDevice->somedevice->CtrlProc(device, ctrl)
DevicePtr device;
SomethingCtrl *ctrl;

You write two versions of this procedure, one for tlethoard and one for the pointinguilee. DIX calls it
to inform DDX when a client has requested changes in the current settings for the partiocdar fee a
keyboard, this might be the repeat threshold and fatea pointing device, this might be a scaling factor
(coarse or fine) for position reporting. See input.h for the ctrl structures.

5.1.5. Inputlnitialization

Input initialization is a bit complicated. It all starts with Initinput(), a routine that you write to call Addin-
putDevice() twice (once for pointing device and once &ybkard.) Yu also want to call Regis-
terKeyboardDevice() and RegisterPointerDevice() on them.

When you Add the devices, a routine you supply for each device gets called to initializerthermdi-
vidual initialize routines must call Inig{boardDeviceStruct() or InitPointerDeviceStruct(), depending
upon which it is. In other words, you indicate twice that thgbkard is the &board and the pointer is the
pointer.

void Initinput(argc, argv)
int argc;
char **argv;
Initinput is a DDX routine you must write to initialize the input subsystem in DDX. It must call AddInput-
Device() for each device that might generatents. Inaddition, you must register the maieykoard and
pointing devices by calling RegisterPointerDevice() and RegistéidardDevice().

DevicePtr AddInputDevice(deviceProc, autoStart)
DeviceProc deviceProc;
Bool autoStart;

AddInputDevice is a DIX routine you call to create a device object. deviceProc is a DDX routine that is
called by DIX to do various operations. AutoStart should be TRUE for devices that need to be turned on at
initialization time with a special call, as opposed to waiting for some client application to turn them on.

This routine returns NULL if sufficient memory cannot be allocated to install the device.

Note also that except for the maieykoard and pointing device, an extension is needed to provide for a
client interface to a device.

void RegisterPointerDevice(device)
DevicePtr device;

RegisterPointerDevice is a DIX routine that your DDX code calls that makes that device the main pointing
device. Thisroutine is called once upon initialization and cannot be called again.

void RegisterkeyboardDevice(device)
DevicePtr device;

RegisterieyboardDevice makes thevgh device the main &yboard. Thigoutine is called once upon ini-
tialization and cannot be called again.

The following DIX procedures return the specified DeviceRtey may or may not be useful to DDX
implementors.

DevicePtr LookupleyboardDevice()

Porting Layer Definition -17 - April 8, 1994

LookupKeyboardDevice returns pointer for current ma@yidoard device.

DevicePtr LookupPointerDevice()
LookupPointerDevice returns pointer for current main pointing device.

A DeviceProc (the kind passed to AddinputDevice()) in the following form:

Bool pinternalDevice->DeviceProc(device, action);
DevicelntPtr device;
int action;

You must write a DeviceProc for eachvilee. deice points to the device record. action tells what action
to take; it will be one of these defined constants (defined in input.h):

. DEVICE_INIT - At DEVICE_INIT time, the device should initialize itself by calling InitPointerDe-
viceStruct(), InitkeyboardDeviceStruct(), or a similar routine (see below) and "opening" the device if
necessarylf you return a non-zero (i.e., = Success) value from the DEVICE_INIT call, that device
will be considered unailable. If either the maindyboard or main pointing device cannot be initial-
ized, the DIX code will refuse to continue booting up.

. DEVICE_ON - If the DeviceProc is called with DEVICE_ON, then it is allowed to start putting
evants into the client stream by calling through the ProcessinputProc in the device.

. DEVICE_OFF - If the DeviceProc is called with DEVICE_QRB further eents from that device
should be gien to the DIX layer The device will appear to be dead to the user.

. DEVICE_CLOSE - At DEVICE_CLOSE (terminate or reset) time, the device should be totally
closed down.

void InitPointerDeviceStruct(device, map, mapLength,
GetMotionEvents, ControlProc, numMotionEvents)

DevicePtr device;

CARDS8 *map;

int mapLength;

ValuatorMotionProcPtr ControlProc;

PtrCtrIProcPtr GetMotionEvents;

int numMotionEvents;
InitPointerDeviceStruct is a DIX routine you call at DEVICE_INIT time to declare some operating
routines and data structures for a pointingce2 mapand mapLength are as described in the X
Windaw System protocol specification. ControlProc and GetMotionEvents are DDX routines, see
above.

numMotionEvents is for the motion-buffer-size for the GetMotionEvents regAdgpical length
for a motion buffer would be 10&ents. Aserver that does not implement this capability should set
numMotionEvents to zero.

void InitkeyboardDeviceStruct(device, pfSyms, pModifiers, Bell, ControlProc)
DevicePtr device;
KeySymsPtr pleySyms;
CARDS8 *pMadifiers;
BellProcPtr Bell;
KbdCtrlProcPtr ControlProc;

You call this DIX routine when adyboard device is initialized and its device procedure is called
with DEVICE_INIT. The formats of thedysyms and modifier maps are defined in

Xsener/include/input.h. Thedescribe the layout ofdys on he keyboards, and the glyphs associ-
ated with them.(See the next section for information on setting up the modifier map andysark

Porting Layer Definition -18 - April 8, 1994

map.) ControlProand Bell are DDX routines, see aeo

5.1.6. Keyboard Mapping and Keycodes

When you send agiyboard @ent, you send a report that avg key has either been pressed or has been
released. Themmust be a &code for eachdy that identifies the éy; the lkeycode-to-ley mapping can be
ary mapping you desire, because you specify the mapping in a table you set up for DIX&eklgawe are

restricted by the protocol specification ®y&ode values in the range 8 to 255 inclasi

The keycode mapping information that you set up consists of the following:
. A minimum and maximumeycode number

. An aray of sets of &ysyms for eachdy, that is of length maxdycode - minkeycode + 1. Each ele-
ment of this array is a list of codes for symbols that are on dyafTihere is no limit to the number
of symbols that can be on ayk

Once the map is set up, DIX keeps and maintains the sligmathges to it.

The X protocol defines standard names to indicate the symbol(s) printed orey=agh kKSee
X11/keysym.h)

Legd modifier keys must generate both up and down transitions. When a client tries to change a modifier
key (for instance, to mak"A" the "Control" key), DIX calls the following routine, which should retuurn
TRUE if the ley an be used as a modifier on theegidevice:

Bool LegdModifier(key, pDev)
unsigned int ky;
DevicePtr pDev;

5.2. Sceens

Different computer graphics displaysveadfferent capabilities. Some are simple monochrome frame
buffers that are just lying there in memomgiting to be written into. Others are color displays with many
bits per pixel using some color lookup table. Still othergehigh-speed graphic processors that prefer to
do all of the work themselves, including maintaining their own hig#slgraphic data structures.

5.2.1. Sceen Hardware Requirements

The only requirement on screens is that you be able to both read and write locations in the frame buffer.
All screens must hee a epth of 32 or less (unless you use an X extension t aligeater depth). All
screens must fit into one of the classes listed in the section in this document on Visuals and Depths.

X uses the pixel as its fundamental unit of distance on the screen. Therefore, most programs will measure
evaything in pixels.

The sample server assumes squarelpixSerioudWYSIWYG (what you see is what you get) applications

for publishing and drawing programs will adjust for different screen resolutions automat@atisider-

able work is imolved in compensating for non-square pixels (a bit in the DDX code for the sample server
but quite a bit in the client applications).

5.2.2. DataStructures

X supports multiple screens that are connected to the same sEneeefore, all the per-screen information
is bundled into one data structure of attributes and procedures, which is the ScreenRec (see
Xserver/include/scrnintstr). Theprocedure entry points in a ScreenRec operate on regions, colormaps,
cursors, and fonts, because these resources can differ in format from one screen to another.

Porting Layer Definition -19- April 8, 1994

Windows are areas on the screen that can be drawn into by graphic routines. "Pixmaps" are off-screen
graphic areas that can be drawn into. yrére both considered drables and are described in the section
on Drawables. Allgraphic operations work on dvables, and operations aresédable to coy patches

from one dravable to another.

The pixel image data in all deables is in a format that is pete to DDX. In fact, each instance of a draw-
able is associated with avgh screen. Presumablthe pixel image data for pixmaps is chosen to be con-
veniently understood by the hardve. Allscreens in a single server must be able to handle all pixmaps
depths declared in the connection setup information.

Pixmap images are transferred to the server in onecfviys: XYPixmap or ZPimap. XYPixmaps are a
series of bitmaps, one for each bit plane of the image, using the bitmap padding rules from the connection
setup. ZPixmapare a series of bits, nibbles, bytes or words, one for each pixel, using the format rules
(padding and so on) for the appropriate depth.

All screens in a gien srver must agree on a set of pixmap image formats (PixmapFormat) to support
(depth, number of bits per pixel, etc.).

There is no color interpretation of bits in the pixmap. Pixmaps do not contain gieby Thenterpreta-
tion is made only when the bits are transferred onto the screen.

The screenlinfo structure (in scrnintstr.h) is a global data structure that has a pointer to an array of Screen-
Recs, one for each screen on the ser{fnese constitute the one and only description of each screen in the
server) Eachscreen has an identifying ind€0, 1, 2, ...). In addition, the screenlinfo struct contains global
server-wide details, such as the bit- and byte- order in all bit images, and the list of pixmap image formats
that are supported. The X protocol insists that these must be the same for all screens on the server.

5.2.3. Outputlnitialization

InitOutput(pScreeninfo, argc, argv)

Screenlinfo *pScreeninfo;

int argc;

char **argv;
Upon initialization, your DDX routine InitOutput() is called by DIX. It is passed a pointer to screeninfo to
initialize. Itis also passed the argc and argv from main() for your server for the command-line arguments.
These arguments may indicate what avmeary screen device(s) to use or in what way to use thEan.
instance, your server command line mayvaléo"-D" flag followed by the name of the screen device to use.

Your InitOutput() routine should initialize each screen you wish to use by calling AddScreen(), and then it
should initialize the pixmap formats that you support by storing values directly into the screeninfo data
structure. %u should also set certain implementation-dependent numbers and procedures in your screen-
Info, which determines the pixmap and scanline padding rules for all screens in the server.

int AddScreen(scrinitProc, argc, argv)

Bool (*scrinitProc)();

int argc;

char **argv;
You should call AddScreen(), a DIX procedure, in InitOutput() once for each screen to add it to the screen-
Info database. The first argument is an initialization procedure for the screen that you $hppgcond
and third are the argc and argv from main(). It returns the screen number of the screen installed, or -1 if
there is either insufficient memory to add the screen, or (*scrinitProc) returned FALSE.

The scrinitProc should be of the following form:

Bool scrinitProc(iScreen, pScreen, argc, argv)
int iScreen;

Porting Layer Definition -20- April 8, 1994

ScreenPtr pScreen;
int argc;
char **argv;
iScreen is the indefor this screen; 0 for the first one initialized, 1 for the second, etc. pScreen is the
pointer to the screemiew SreenRec. @c and argv are as befor¥our screen initialize procedure should
return TRUE upon success or FALSE if the screen cannot be initialized (for instance, if the screen hardware
does not exist on this machine).

This procedure must determine what actual device it is supposed to initialize. Ifwgoa tiferent proce-

dure for each screen, then it is no problem. If yoteHae same procedure for multiple screens, it may

have trouble figuring out which screen to initialize each time around, especially if InitOutput() does not ini-
tialize all of the screens. It is probably easiest teelee procedure for each screen.

The initialization procedure should fill in all the screen procedures for that screen (windowing functions,
region functions, etc.) and certain screen attributes for that screen.

5.2.4. RegiorRoutines in the ScreenRec

Aregon i