X11 Input Extension Protocol Specification

Version 1.0
X Consortium Standard

X Version 11, Release 6.4

Mark P atrick Ardent Computer
George Sachs Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Com@aad Ardent Computer

Permission to use, cgpmodify, and distribute this documentation forygourpose and without

fee is hereby granted, provided that thevabmpyright notice and this permission notice appear
in all copies. Ardent and Hewlett-Packard mailo epresentations about the suitability for any
purpose of the information in this document. It is provided "as is" without express or implied
warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, ygparson obtaining a cemf this software and
associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, gomodify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The abwee mpyright notice and this permission notice shall be included in all copies or substan-
tial portions of the Software.

THE SOFTWARE IS PRVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NO LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising
or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization from the X Consortium.

XWindow Systemis a trademark of X Consortium, Inc.

1.1. Input Extension Overview

This document defines an extension to the X11 protocol to support input devices other than the
core X leyboard and pointerAn accompanying document defines a corresponding extension to
Xlib (similar extensions for languages other than C are anticipated). This first secg®agi
overview of the input &tension. Thenext section defines thewm@rotocol requests defined by

the tension. V& mnclude with a description of thewménput e’ents generated by the additional
input devices.

1.2. DesignrApproach

The design approach of the extension is to define requestsentsl @alogous to the core
requests andvents. This allows extension input devices to be individually distinguishable from
each other and from the core inpuvides. Theseequests andvents male use of a device iden-
tifier and support the reporting of n-dimensional motion data as well as other data that is not
reportable via the core inputants.

1.3. Cor Input Devices

The X server core protocol supportotimput devices: apointer and adyboard. Thepointer

device has te major functions. First, it may be used to generate motion information that client
programs can detect. Second, it may also be used to indicate the current location and focus of the
X keyboard. D accomplish this, the server echoes a cursor at the current position of the X

pointer Unless the X &yboard has been explicitly focused, this cursor also shows the current
location and focus of the Xelgboard.

The X keyboard is used to generate input that client programs can detect.

The X keyboard and X pointer are referred to in this document asotieelevices, and the input
events thg generate KeyPress KeyReleaseButtonPress ButtonRelease and MotionNotify)
are known as theore input events. All other input devices are referred toestension input
devices and the input\aents the generate are referred to edension input events.

Note

This input extension does not change the behavior or functionality of the core input
devices, corewvents, or core protocol requests, with the exception of the core grab
requests. Thesequests may affect the synchronizationwahés from extension
devices. Seg¢he explanation in the section titled "Event Synchronization and Core
Grabs".

Selection of the physical devices to be initially used by the server as the core devices is left imple-
mentation-dependent. Requeats defined that aNeclient programs to change which physical
devices are used as the core devices.

1.4. Extensioninput Devices

The input extension controls access to input devices other than #ydakd and X pointerlt
allows client programs to select input from these devices independently from each other and inde-
pendently from the core devices.

A client that wishes to access a specific device must first determine whether that device is con-
nected to the X serveiThis is done through theastinputDevices request, which will return a

list of all devices that can be opened by the X serfetlient can then open one or more of these
devices using th®penDevicerequest, specify whatients thg are interested in receiving, and
receve and process inputvents from extension devices in the same wayvasts from the X

X I'nput Extension Protocol Specification X11, Release 6.4

keyboard and X pointerinput ezents from these devices are of extension typeviceKey-
Press DeviceKeyReleasgDeviceButtonPressDeviceButtonReleasgDeviceMotionNotify,
etc.) and contain a device identifier so themés of the same type coming from different input
devices can be distinguished.

Any kind of input device may be used as an extension inpmiteleExtensionnput devices may
have 0 o more keys, 0 or more buttons, and may report O or more axes of motion. Motion may
be reported as relag novements from a previous position or as an absolute position. All valua-
tors reporting motion information for avgh extension input device must report the same kind of
motion information (absolute or reled).

This extension is designed to accommodate types of input devices that may be added in the
future. Theprotocol requests that refer to specific characteristics of input devigapsézerthat
information byinput classes Server implementors may addwelasses of input devices without
changing the protocol requests. Input classes are unique numbers registered with the X Consor-
tium. Eachextension input device may support multiple input classes.

All extension input devices are treatectlike core X kyboard in determining their location and
focus. Theserver does not track the location of these devices on an individual basis, and there-
fore does not echo a cursor to indicate their current location. Instead, their location is determined
by the location of the core X pointelike the core X keyboard, some may be explicitly focused.

If they are not explicitly focused, their focus is determined by the location of the core X pointer.

Input events reported by the server to a client are of fixed size (32 bytes). In order to represent
the change in state of an input device the extension may need to generate a sequence of input
events. Aclient side library (such as Xlib) will typically takhese rav input events and format

them into a form more ceenient to the client.

1.4.1. Eent Classes

In the core protocol a client registers interest in receiving certain ingniisedirected to a win-
dow by modifying that windows event-mask. Mosbf the bits in the went mask are already used
to specify interest in core Xents. Theinput extension specifies a different mechanism by
which a client can express interest uergs generated by this extension.

When a client opens a extension input device viddfpenDevicerequest, aiXDevice structure

is returned. Macros are provided that extract 32-bit numbers eaitaticlassedrom that struc-
ture, that a client can use to register interest in extengemsevia theSelectExtensionEvent
request. Thevent class combines the desirada type and device id, and may be thought of as
the equiadent of core gent masks.

1.4.2. InputClasses

Some of the input extension requests divide input devices into classes based on their functionality.
This is intended to ali® new dasses of input devices to be defined at a later time without chang-
ing the semantics of these requests. The following input device classes are currently defined:

KEY
The device reportsdy events.

BUTTON
The device reports buttonents.

VALUATOR
The device reports valuator data in motioergs.

PROXIMITY
The device reports proximityents.

X I'nput Extension Protocol Specification X11, Release 6.4

FOCUS
The device can be focused and reports fouasts.

FEEDBACK
The device supports feedbacks.

OTHER
The ChangeDeviceNotify DeviceMappingNotify, and DeviceStateNotifymacros
may be iroked passing theXDevice structure returned for this device.

Each extension input device may support multiple input classes. Additional classes may be added
in the future. Requests that support multiple input classes, suchlastthputDevices function

that lists all gailable input devices, genize the data thyereturn by input class. Client programs

that use these requests should not access data unless it matches a class defined at the time those
clients were compiled. In this wagew dasses can be added without forcing existing clients that

use these requests to be recompiled.

2. Requests
Extension input devices are accessed by client programs through the usepoftoeol requests.

This section summarizes thewmneequests defined by thigtension. Thesyntax and type defini-
tions used bels follow the notation used for the X11 core protocol.

2.1. Gettingthe Extension Version
The GetExtensionVersionrequest returns version information about the input extension.

GetExtensionVersion
name: STRING

=
present: BOOL
protocol-major-version: CARD16
protocol-minor-version: CARD16

The protocol version numbers returned indicate the version of the input extension sup-
ported by the target X servefrhe version numbers can be compared to constants defined
in the header filXl.h. Each version is a superset of the previous versions.

2.2. Listing Available Devices

A client that wishes to access a specific device must first determine whether that device is con-
nected to the X serveihis is done through tHastinputDevices request, which will return a
list of all devices that can be opened by the X server.

ListinputDevices
=>
input-devices: LISTofDEVICEINFO

where

X I'nput Extension Protocol Specification X11, Release 6.4

DEVICEINFO: [type: AAOM
id: CARDS
num_classes: CARD8
use: {IsXKeyboard, IsXPointensExtensionDevice}
info: LISTOfINPUTINFO
name: STRINGS]

INPUTINFO: {KEYINFO, BUTTONINFO, VALUATORINFO}

KEYINFO: [class: CARDS
length: CARD8
min-keycode: KEYCODE
max-keycode: KEYCODE
num-keys: CARD16]

BUTTONINFO: [class: CARDS
length: CARD8
num-buttons: CARD16]

VALUATORINFO: [class: CARDS8
length: CARDS8
num_axes: CARDS
mode: SETofDEVICEMODE
motion_buffer_size: CARD32
axes: LISTofAXISINFO]

AXISINFO: [resolution: CARD32
min-val: CARD32
max-val: CARD32]

DEVICEMODE: {Absolute, Relatie}

Errors: None

This request returns a list of all devices that can be opened by the X sertueling the core X
keyboard and X pointerSome implementations may open all input devices as part of X initial-
ization, while others may not open an input device until requested to do so by a client program.

« The information returned for each device is as follows:

Thetype field is of typeAtom and indicates the nature of thevie. Clientsmay determine
device types by woking theXInternAtom request passing one of the names defined in the
header fileXl.h. The following names ha& keen defined to date:

X I'nput Extension Protocol Specification X11, Release 6.4

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX
TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE
ID_MODULE
ONE_KNOB
NINE_KNOB

Theid is a small cardinal value in the range 0-128 that uniquely identifies e ddt is

assigned to the device when it is initialized by the serSeme implementations may not open

an input device until requested by a client program, and may close the device when the last client
accessing it requests that it be closed. If a device is opened by a client progkddpeieDe-

vice, then closed viXCloseDevice then opened again, it is not guaranteed te Itee same id

after the second open request.

Thenum_classedield is a small cardinal value in the range 0-255 that specifies the number of
input classes supported by the device for which information is returnieidtbyputDevices.

Some input classes, such as clasusand clas$’roximity do not hae any hformation to be
returned byListinputDevices.

Theusefield specifies hw the device is currently being used. If the values¥Keyboard, the
device is currently being used as theetdoard. Ifthe value idsXPointer, the device is cur-
rently being used as the X pointéf the value idsXExtensionDevice the device isailable for
use as an extension device.

Thenamefield contains a pointer to a null-terminated string that corresponds to one of the
defined device types.

* Inputinfo is one ofiKeyinfo, Buttoninfo or Valuatorinfo . The first two fields are common
to all three:

Theclassfield is a cardinal value in the range 0-255. It uniquely identifies the class of input for
which information is returned.

Thelength field is a cardinal value in the range 0-255. It specifies the number of bytes of data
that are contained in this input class. The length includes the class and length fields.

The remaining information returned for input cl&ESYCLASS is as follows:

min_keycodeis of type KEYCODE. It specifies the minimureycode that the device will
report. Theninimum keycode will not be smaller than 8.

max_keycodeis of type KEYCODE. It specifies the maximumykode that the device will
report. Themaximum leycode will not be larger than 255.

num_keysis a cardinal value that specifies the numberegs$ fhat the device has.

X I'nput Extension Protocol Specification X11, Release 6.4

The remaining information returned for input cl88$TTONCLASS is as follows:
num_buttonsis a cardinal value that specifies the number of buttons that the device has.
The remaining information returned for input cl&#d.UATORCLASS is as follows:

modeis a constant that has one of the following valddssolute or Relative. Some devices
allow the mode to be changed dynamically via$lietDeviceModeequest.

motion_buffer_sizeis a cardinal number that specifies the number of elements that can be con-
tained in the motion history buffer for the device.

Theaxesfield contains a pointer to an AXISINFO struture.
» The information returned for each axis reported by the device is:
Theresolution is a cardinal value in counts/meter.

Themin_val field is a cardinal value in that contains the minimum value the device reports for
this axis. For devices whose mode Relative, the min_val field will contain 0.

Themax_valfield is a cardinal value in that contains the maximum value the device reports for
this axis. For devices whose mode Relative, the max_val field will contain O.

2.3. EnablingDevices

Client programs that wish to access an extension device must request that the server open that
device. Thisis done via th®penDevicerequest.

OpenDevice
id: CARDS8
=>
DEVICE: [device_id: XID

num_classes: INT32
classes: LISTofINPUTCLASSINFO]

INPUTCLASSINFO: [input_class: CARDS
event_type_base: CARDS]

Errors: Device

This request returns theent classes to be used by the client to indicate whiehtg the client
program wishes to rea@. Each input class may reportveeal event classesFor example, input
classkeysreportsDeviceKeyPressandDeviceKeyReleasevant classes. Input classes are
unique numbers registered with the X Consortium. Input €kissr exists to report eent
classes that are not specific tg @ane input class, such &eviceMappingNotify, ChangeDevi-
ceNotify, and DeviceStateNotify

* The information returned for each device is as follows:
Thedevice_idis a number that uniquely identifies the device.
Thenum_classedield contains the number of input classes supported by this device.

» For each class of input supported by the devicelrhetClassinfo structure contains the fol-
lowing information:

X I'nput Extension Protocol Specification X11, Release 6.4

Theinput_classis a small cardinal number that identifies the class of input.

Theevent_type bases a small cardinal number that specifies themetype of one of thevents
reported by this input class. This information is not directly used by client programs. Instead, the
Deviceis used by macros that return extensieenetypes andwent classes. This is described in

the section of this document entitled "Selecting Extension Device Events".

Before it exits, the client program should explicitly request that the server closevittee dehis
is done via th&€loseDevicaequest.

A client may open the same extension device more than once. Requests after the first successful
one return an additionXIDevice structure with the same information as the first, but otherwise
have ro éfect. AsingleCloseDevicerequest will terminate that cliesteccess to the device.

Closing a device releasesyaattive a passve gabs the requesting client has established. If the
device is frozen only by an aeti gab of the requesting client, the queueengs are released
when the client terminates.

If a client program terminates without closing a device, the server will automatically close that
device on behalf of the client. This does not affegtaher clients that may be accessing that
device.

CloseDevice
device: DEVICE

Errors: Device

2.4. ChangingThe Mode Of A Device

Some devices are capable of reporting either velatiabsolute motion dataTo change the
mode of a device from relad 0 absolute, use th8etDeviceModeequest. Thealid values are
Absolute or Relative.

This request will fail and returdeviceBusyif another client already has the device open with a
different mode. It will fail and returAlreadyGrabbed if another client has the device grabbed.
The request will fail with 8adMatch error if the requested mode is not supported by the device.

SetDeviceMode
device: DEVICE
mode: {Absolute, Relatg}

Errors: Device, Match, Mode

status: {Success, DeviceBug\readyGrabbed}

2.5. Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a s@tsmgD®ices

that are capable of reporting relatinotion or absolute positional data may require that their val-
uators be initialized to a starting value after the mode of the device is chagesblote. To
initialize the valuators on such a device, useSéeviceValuatorsrequest.

X I'nput Extension Protocol Specification X11, Release 6.4

SetDeviceValuators
device: DEVICE
first_valuator: CARDS
num_valuators: CARDS
valuators: LISTOFINT32

Errors: Length, Device, Match, Value

status: {Success, AlreadyGrabbed}

This request initializes the specified valuators on the specified extension ipat dé&luators

are numbered beginning with zero. Only the valuators in the range specified by first_valuator and
num_valuators are set. If the number of valuators supported by the device is less than the expres-
sion first_valuator + num_valuatorsyalue error will result.

If the request succeedsuccesss returned. If the specifed device is grabbed by some other
client, the request will fail and a statusAdfeadyGrabbed will be returned.

2.6. Gettinglnput Device Controls

GetDeviceControl
device: DEVICE
control;: XID

Errors: Length, Device, Match, Value

controlState: {DeviceState}

where

DeviceState: DeviceResolutionState

Errors: Length, Device, Match, Value

This request returns the current state of the specified device control. The device control must be
supported by the target server and device or an error will result.

If the request is successful, a pointer to a generic DeviceState structure will be returned. The
information returned varies according to the specified control and is mapped by a structure appro-
priate for that control.

GetDeviceControl will fail with a BadValue error if the server does not support the specified con-
trol. It will fail with a BadMatch error if the device does not support the specified control.

Supported device controls and the information returned for them include:

X I'nput Extension Protocol Specification X11, Release 6.4

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
num_valuators: CARDS8
resolutions: LISTofCARD32
min_resolutions: LISToOfCARD32
max_resolutions: LISTofCARD32]

This device control returns a list of valuators and the range of valid resolutions allowed for each.
Valuators are numbered beginning with 0. Resolutions for all valuators on the device are
returned. Br each valuator i on the device, resolutions]i] returns the current setting of the resolu-
tion, min_resolutions]i] returns the minimum valid setting, and max_resolutions][i] returns the
maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the specified
device has no valuators.

ChangeDeviceControl
device: DEVICE
XID: controlld
control: DeviceControl

where

DeviceControl: DeviceResolutionControl

Errors: Length, Device, Match, Value
=>
status: {Success, DeviceBuygireadyGrabbed}

ChangeDeviceControl changes the specifed device control according to the values specified in the
DeviceControl structure. The device control must be supported by the target server and device or
an error will result.

The information passed with this request varies according to the specified control and is mapped
by a structure appropriate for that control.

ChangeDeviceControl will fail with a BadValue error if the server does not support the specified
control. Itwill fail with a BadMatch error if the server supports the specified control, but the
requested device does not. The request will fail and return a status of DeviceBusy if another
client already has the device open with a device control state that conflicts with the one specified
in the request. It will fail with a status of AlreadyGrabbed if some other client has grabbed the
specified deice. Ifthe request succeeds, Success is returned. If it fails, the device control is left
unchanged.

Supported device controls and the information specified for them include:

DEVICE_RESOLUTION: [control: CARD16
length: CARD16
first_valuator: CARD8
num_valuators: CARDS8
resolutions: LISTofCARD32]

X I'nput Extension Protocol Specification X11, Release 6.4

This device control changes the resolution of the specified valuators on the specified extension
input device. \aluators are numbered beginning with zero. Only the valuators in the range speci-
fied by first_valuator and num_valuators are getvalue of -1 in the resolutions list indicates that

the resolution for this valuator is not to be changed. num_valuators specifies the number of valu-
ators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if the
specified device has nalators. Ifa resolution is specified that is not within the range of valid
values (as returned by XGetDeviceControl) the request will fail with a BadValue &rtbe

number of valuators supported by the device is less than the expression first_valuator + num_val-
uators, a BadValue error will result.

If the request fails for grreason, none of the valuator resolutions will be changed.

2.7. Selectingextension Device Events
Extension inputeents are selected using tBelectExtensionEventequest.

SelectExtensionEvent
window: WINDOW
interest: LISToOfEVENTCLASS

Errors: Windav, Class, Access

This request specifies to the server tmnes within the specified winaowhich are of interest to
the client. As with the cor¥Selectinput function, multiple clients can select input on the same
window.

XSelectExtensionEventequires a list oévent classes. An event class is a 32-bit number that
combines anwent type and device id, and is used to indicate whiehtea client wishes to
receve and from which device it wishes to receiit. Macrosare provided to obtairnvent classes
from the data returned by tk®penDevicerequest. Th@ames of these macros correspond to
the desirednts, i.e. theDeviceKeyPresss used to obtain thevent class foDeviceKeyPress
events. Thesyntax of the macro uocation is:

DeviceKeyPress (device vent_type, gent_class);
device: DEVICE
event_type: INT
event_class: INT

The value returned iavent_type is the value that will be contained in theet type field of the
XDeviceKeyPressEventvhen it is receied by the client. The value returned évent_classis
the value that should be passed in makin&electExtensionEventequest to recee
DeviceKeyPressvents.

For DeviceButtonPressvents, the client may specify whether or not an implicit pasgiab
should be done when the button is pressed. If the client wants to guarantee that it wdlaecei
DeviceButtonReleas@vent for eactDeviceButtonPressevent it receves, it should specify the
DeviceButtonPressGrabevent class as well as thigeviceButtonPressvent class. This restricts
the client in that only one client at a time may reqDesticeButtonPressvents from the same
device and windw if any dient specifies this class.

10

X I'nput Extension Protocol Specification X11, Release 6.4

If any client has specified theeviceButtonPressGralxclass, ayp requests by another client
that specify the same device and wiwdmd specifyDeviceButtonPressor DeviceButtonPress-
Grab will cause amAccesserror to be generated.

If only the DeviceButtonPressclass is specified, no implicit passigab will be done when a
button is pressed on thevdee. Multipleclients may use this class to specify the same device and
window combination.

A client may also specify theeviceOwnerGrabButtonclass. Ifit has specified both the
DeviceButtonPressGraband theDeviceOwnerGrabButton classes, implicit pass gabs will
activate with owner_eents set tdlr ue. If only theDeviceButtonPressGralxclass is specified,
implicit passve gabs will actvate with owner_eents set td-alse

The client may sele®eviceMotion events only when a button is dm. It does this by specify-
ing the @ent classe8utton1Motion throughButton5Motion, or ButtonMotion. An input
device will only support as mgrbutton motion classes as it has buttons.

2.8. DeterminingSelected Events

To determine which extensiovents are currently selected from aai window, useGetSelect-
edExtensionEvents

GetSelectedExtensionEvents
window: WINDOW

=>
this-client; LISTofEVENTCLASS
all-clients: LISTofEVENTCLASS

Errors: Window

This request returns twlists specifying thewents selected on the specified wimdoOne list
gives the extensionwents selected by this client from the specified wimddhe other list gies
the extensionwents selected by all clients from the specified wimddhis information is equiv-
alent to that returned by youvent-mask and allxent-masks in &etWindowAttributes
request.

2.9. Controlling Event Propagation

Extension eents propagate up the wingdierarcty in the same manner as cokes. Ifa win-

dow is not interested in an extensioveat, it usually propagates to the closest ancestor that is
interested, unless the dont_propagate list prohibits it. Grabs of extension devices may alter the set
of windows that recege a m@rticular extensionwvent.

Client programs may control extensiorest propagation through the use of the following two
requests.

XChangeDeviceDontPropagateLisadds anent to or deletes arvent from the do_not_propa-
gate list of extensionwents for the specified windo This list is maintained for the life of the
window, and is not altered if the client terminates.

ChangeDeviceDontPropagateList
window: WINDOW
eventclass: LISTOfEVENTCLASS

11

X I'nput Extension Protocol Specification X11, Release 6.4

mode: {AddToList, DeleteFromList}

Errors: Windaev, Class, Mode

This function modifies the list specifying theeats that are not propagated to the ancestors of the
specified winder. You may use the modésidToList or DeleteFromList.

GetDeviceDontPropagateList
window: WINDOW

Errors: Window

dont-propagate-list: LISTofEVENTCLASS

This function returns a list specifying theests that are not propagated to the ancestors of the
specified winduw.

2.10. Sendingextension Events
One client program may send are to another via th¥SendExtensionEvenfunction.

The avent in theXEvent structure must be one of theeats defined by the input extension, so
that the X server can correctly byte swap the contents as neceBsamgontents of thevent are
otherwise unaltered and unchecked by the X server except to forcessndo &r ue in the for-
warded &ent and to set the sequence number in Yleatecorrectly.

XSendExtensionEvent returns zero if thevawgsion-to-wire protocol failed, otherwise it returns
nonzero.

SendExtensionEvent
device: DEVICE
destination: WINDOW
propagate: BOOL
eventclass: LISTofEVENTCLASS
event: XEVENT

Errors: Device, Value, Class, Window

2.11. GettingMotion History

GetDeviceMotionEvents
device: DEVICE
start, stop: TIMESTAMP or CurrentTime

nevents_return: CARD32
mode_return: {Absolute, Relas}
axis_count_return: CARDS

evats: LISTofDEVICETIMECOORD

12

X I'nput Extension Protocol Specification X11, Release 6.4

where
DEVICETIMECOORD: [data:LIS®fINT32 time:TIMESTAMP]

Errors: Device, Match

This request returns all positions in the dexdgedtion history buffer that fall between the speci-
fied start and stop times inclusi If the start time is in the future, or is later than the stop time,
no positions are returned.

The data field of the DEVICETIMECOORD structure is a sequence of data items. Each item is
of type INT32, and there is one data item per axis of motion reported byibe.d&€henumber
of axes reported by the device is returned in the axis_count variable.

The value of the data items depends on the mode of the device, which is returned in the mode
variable. Ifthe mode is Absolute, the data items are theviadues generated by the device.

These may be scaled by the client program using the maximum values that the device can gener-
ate for each axis of motion that it reports. The maximum and minimum values for each axis are
reported by théistinputDevices request.

If the mode is Relati, the data items are the relaivalues generated by theuvitee. Theclient
program must choose an initial position for the device and maintain a current position by accumu-
lating these relate values.

2.12. ChangingThe Core Devices

These requests are provided to change which physical device is used as the X pointer or X
keyboard.

Note

Using these requests may change the characteristics of the ciocesd& henew

pointer device may Ive a dfferent number of buttons than the old one did, or the

new keyboard device may e a dfferent number of &ys or report a different range

of keycodes. Clienprograms may be running that depend on those characteristics.
For example, a client program could allocate an array based on the number of buttons
on the pointer device, and then use the button numbersegaebutton e’ents as

indicies into that arrayChanging the core devices could cause such client programs

to behae improperly or abnormally terminate.

These requests change thee$tboard or X pointer device and generateClnangeDeviceNotify
event and aviappingNotify event. TheChangeDeviceNotifyevent is sent only to those clients
that hae expressed an interest in receiving thadre via theXSelectExtensionEventequest.
The specified device becomes thern€keyboard or X pointer déce. Thelocation of the core
device does not change as a result of this request.

These requests fail and retuklieadyGrabbed if either the specified device or the core device it
would replace are grabbed by some other client.yTaiand returrGrabFrozen if either
device is frozen by the ae#i gab of another client.

These requests fail withBadDeviceerror if the specified device isvidid, or has not previously
been opened vi@penDevice

To change the X &yboard device, use tighangeKeyboardDevicaequest. Thepecified

13

X I'nput Extension Protocol Specification X11, Release 6.4

device must support input clasgys (as reported in the ListinputDevices request) or the request

will fail with a BadMatch error. Once the device has successfully replaced one of the core
devices, it is treated as a core device until it is in turn replaced by another ChangeDevice request,
or until the server terminates. The termination of the client that changed the device will not
cause it to change back. Attempts to use the CloseDevice request to close cheeraevice

will fail with a BadDevice error.

The focus state of the wekeyboard is the same as the focus state of the oleyidard. Ifthe
new keyboard was not initialized with BocusReg one is added by théhangeKeyboardDevice
request. TheX keyboard is assumed tov@maKbdFeedbackClassRec If the device was initial-
ized without &KbdFeedbackClassRegcone will be added by this request. TKiedFeedback-
ClassReawill specify a null routine as the control procedure and the bell procedure.

ChangekeyboardDevice
device: DEVICE

Errors: Device, Match

status: Success, AlreadyGrabbed, Frozen

To change the X pointer device, use QigangePointerDevicaequest. Thepecified device

must support input class Valuators (as reported in the ListinputDevices request) or the request
will fail with a BadMatch errar The valuators to be used as the x- and y-axes of the pointer
device must be specified. Data from other valuators on the device will be ignored.

The X pointer device does not contair@usRec If the nev pointer was initialized with a
FocusReg it is freed by the&ChangePointerDevicaequest. Th& pointer is assumed to taa
ButtonClassRecand aPtrFeedbackClassRec If the device was initialized withoutButton-
ClassReoor aPtrFeedbackClassRecone will be added by this request. TBettonClassRec
added will hae ro buttons, and th@trFeedbackClassRewvill specify a null routine as the con-
trol procedure.

If the specified device reports absolute positional information, and the server implementation does
not allov such a device to be used as the X pojnter request will fail with 8adDeviceerror.

Once the device has successfully replaced one of the core devices, it is treated as a core device
until it is in turn replaced by another ChangeDevice request, or until the server terminates. The
termination of the client that changed the device will not cause it to change back. Attempts to
use the CloseDevice request to close the coee device will fail with a BadDevice error.

ChangePointerDevice
device: DEVICE
xaxis: CARD8
yaxis: CARDS
Errors: Device, Match

status: Success, AlreadyGrabbed, Frozen

14

X I'nput Extension Protocol Specification X11, Release 6.4

2.13. Ewent Synchronization And Core Grabs

Implementation of the input extension requires an extension of the meanir@ptoynchroniza-
tion for the core grab requests. This is necessary in order vowwifalow managers to freeze all
input devices with a single request.

The core grab requests requirpanter_modeandkeyboard_modeargument. Themeaning of

these modes is changed by the inpa¢rsion. Br theXGrabPointer andXGrabButton
requestspointer_mode controls synchronization of the pointer device, kegboard_mode

controls the synchronization of all other inputides. Fr theXGrabKeyboard andXGrabKey
requestspointer_mode controls the synchronization of all input devices except theydard,

while keyboard_modecontrols the synchronization of theyboard. Wherusing one of the core

grab requests, the synchronization of extension devices is controlled by the mode specified for the
device not being grabbed.

2.14. ExtensionActive Grabs

Active gabs of extension devices are supported vigGitadDevicerequest in the same way that
core devices are grabbed using the core Gegiard request, except thaDavice is passed as a
function parameterA list of events that the client wishes to reeeiis dso passed. Thengrab-
Devicerequest allows a previous agtigab for an extension device to be released.

To gab an extension device, use iabDevicerequest. Theevice must hae previously been
opened using th@®penDevicerequest.

GrabDevice
device: DEVICE
grab-window: WINDOW
owner-ezents: BOOL
event-list: LISTOfEVENTCLASS
this-device-mode: {Synchronous, Asynchronous}
other-device-mode: {Synchronous, Asynchronous}
time:TIMESTAMP or CurrentTime

status: Success, AlreadyGrabbed, FrozergitiTime, NotVievable

Errors: Deice, Windav, Value

This request actely grabs control of the specified inputvitee. Furtheinput events from this
device are reported only to the grabbing client. This reqwestides ay previous actie gab
by this client for this device.

The event-list parameter is a pointer to a list @Eet classes. These are used to indicate which
events the client wishes to regeiwhile the device is grabbed. Onlyeat classes obtained from
the grabbed device are valid.

If owner-events isFalse, input events generated from this device are reported with respect to
grab-windav, and are only reported if selected by being included in tesatdist. If owner-
evants isTrue, then if a generatedrent would normally be reported to this client, it is reported
normally, otherwise the eent is reported with respect to the grab-wiwgdend is only reported if
selected by being included in theeet-list. For either value of ownerven